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Abstract

We present a novel approach for designing software components in a �exible way
by a new structuring method	 for which we develop speci
cation and programming
language concepts� We propose to construct components �or objects� from a set of
small services	 called features� The main point is that features can be described in
isolation	 but their core functionality usually has to be extended or adapted in the
presence of other features� This is known	 e�g� in telecommunications	 as the feature
interaction problem� We describe these interactions or dependencies between the in�
dividual features separately in so�called interaction speci
cations� On this basis	 we
propose feature�oriented design as a generalization of object�oriented concepts� With
features	 we can avoid highly entangled class hierarchies and instead de
ne features
with well de
ned dependencies� We show that a wide range of concepts	 techniques
and technical results can be generalized to this new paradigm� For speci
cation and
programming with features	 we cover several concepts of object�oriented languages	
such as subtypes	 parametric features and virtual functions� We introduce generic fea�
tures which a�ect others in a schematic way� Furthermore	 we consider features which
add exception handling in a �exible way�
For the modular speci
cation of complex components	 we outline a methodology

based on decomposition into feature and interaction speci
cations� In order to reason
from the feature speci
cations about the behavior of composed objects	 we develop
re
nement concepts� These lift properties of features to feature combinations� For the
feature interactions	 we show that a certain class of conservative interaction handlers
preserves feature speci
cations	 which addresses the issue of semantic subtyping in our
setting� We 
rst focus on the speci
cation of a single component and then proceed to
object networks with references and exceptions�
On the programming level	 we use feature interaction handlers for two features at

a time� These enable the automatic generation of customized components� For a set
of features	 an exponential number of di�erent feature combinations can be handled
by a quadratic number of interaction resolutions� This is presented as an extension
of the language Java� The generalization of object�oriented concepts is shown by two
translations of our concepts into aggregation and inheritance	 respectively� Our �exible
programming model is complemented by expressive typing concepts including paramet�
ric features and type relations between features�
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Chapter �

Overview

It is well known that developing reliable software e�ciently is a challenging problem	
which is � in current practice � rarely solved in a convincing manner� There are
many reports on failing software projects and an ongoing discussion on the so�called
software crisis �WG���� The main reason is that the complexity of a software product
is generally underestimated� Furthermore	 software has to be adapted or extended
later on� In many cases	 the maintenance of a software product over the full life cycle
accounts for more than 
fty percent of the total cost�
Apart from several other important factors for successful program development	

the internal structure of the software system is a key success factor� The large�scale
design of a software system is called its software architecture� The architecture of a
system describes the key components of a system and their relations� The design of
the individual components strongly depends on the choice of the programming and
component or module concepts�
Since software development is costly and time�consuming	 there are many ap�

proaches on reusing software� Although the idea to develop generic	 reusable software
is not new	 there are many technical and non�technical obstacles� In many cases	 soft�
ware is written again from scratch	 since existing software is di�cult to understand
and usually does not fully match the current needs�
Several recent design concepts and methodologies	 centered around object�oriented

programming	 have raised new hope for more extensive software reuse� First of all	 it
is claimed that the language concepts of object�oriented languages	 such as inheritance
and subtyping	 are the key for reusing and extending software� Furthermore	 so�called
application frameworks have been proposed to capture the essential design of particu�
lar application domains� Frameworks provide the reusable skeleton of an application
domain and have to be completed and�or adapted for each individual application�
However	 these design and reuse technologies are insu�cient in many respects� In

many cases	 the ambitious use of object�oriented concepts to build highly �exible and
generic software led to systems of unmanageable complexity� This is caused by highly
entangled system components which are di�cult to use	 to maintain	 and to extend�
In this thesis	 we present a novel approach for designing software components in a

�



more �exible way by new structuring concepts� We propose to construct components
�or objects� from a set of small services	 called features� The main point is that
features can be described in isolation	 but their core functionality usually has to be
extended or adapted in the presence of other features� This adaption can be due to
con�icting functionality or can be due to a required cooperation� We describe these
interactions or dependencies between the individual features separately in so�called
interaction speci
cations�
On the programming level	 we use adaptors for feature interaction resolutions for

two features at a time� These enable the automatic generation of customized compo�
nents	 which only include the needed services and not the full overhead of a generic
application� For modular speci
cation of features	 we can compose the feature plus
the interaction speci
cations to obtain a speci
cation of an object with a particular
feature selection�
Our new structuring concepts generalize object�oriented concepts such as inheri�

tance and aggregation� Features	 similar to subclasses	 add functionality	 but are not
bound to a class hierachy� Hence we can avoid highly entangled class hierachies and
instead de
ne features with well de
ned dependencies� With our expressive feature
composition method	 we can conveniently use and reuse features� Similarly	 our con�
cepts for feature speci
cation apply to object�oriented speci
cations as well and utilize
the bene
ts of feature�oriented structuring�
This idea of features was strongly motivated by problems in the development of

telecommunication systems	 which recently received much attention �BV��	 CO��	
Din���� In telecommunications	 the term feature is often used to describe the growing
number of small	 individual services provided by telephone and network switching sys�
tems� In particular	 the problem of interactions between the services turned out to be
a crucial problem�
On the other hand	 research in theoretical computer science has led to both simple

and powerful techniques for structuring the language features of programming lan�
guages �LHJ���� These employ abstract concepts of monads �Mog��� and category
theory �Pie���� The contribution here is to select some of these theoretical concepts
and use them to develop a formalism for feature speci
cations� Furthermore	 this
can be used successfully to enhance and advance object�oriented programming� The
theoretical underpinnings are visible on the speci
cation side	 but not on the applied
programming side�
In the following	 we give an overview of the existing concepts	 followed by the main

contributions of this thesis�

Object�Oriented Programming

Object�oriented programming was introduced about thirty years ago� In the last
decade	 it has received considerable attention in the commercial software market� It
is widely argued that modeling a software system as a set of interacting objects is
natural in many applications� Object�oriented programming languages encourage a





di�erent software design	 which supports particular cases of software reuse� The main
contributions of object�orientation are the following language concepts�

� Encapsulation of state �instance variables� and functionality �methods� into ob�
jects� Objects are created as instances of classes	 which de
ne the type of the
state and the functionality of its member objects�

� Subclassing with inheritance allows one to create new classes from existing ones�
A subclass can extend the used state and functionality	 as well as rede
ne func�
tionality�

� Subclass or subtype polymorphism permits to use objects of a subclass in place
of objects of the superclass� With this kind of polymorphism	 code written for a
certain class can be reused for derived subclasses�

The last two items are the central techniques for reuse in object�oriented languages�
It has been claimed that these are su�cient for developing adaptable and reusable
systems� As all classes are built incrementally via subclassing and inheritance in object�
oriented languages	 this often leads to highly entangled inheritance hierarchies which
hamper both development and reuse� As examined in �BBM���	 deep inheritance
trees are statistically correlated with a higher error probability� These problems are
particularly pronounced in large and complex applications	 such as frameworks	 which
is discussed below�

Software Components and Frameworks

A current trend in commercial software is componentware	 which aims for composing
smaller	 reusable software components to larger ones� The idea of software components
is to provide generic software pieces for recurring tasks	 which can be reused in a simple
fashion in several applications� Components are often identi
ed with objects which
have a non�trivial internal structure� Hence components may also have internal	 local
objects	 but to the outside	 they appear as a single object�
In industrial applications	 componentware is largely successful by standardizing

component platforms	 architecture and interfaces	 as for instance demonstrated by
CORBA �Gro��� and OLE�COM �Bro���� Although the idea of simple plug�and�play
with software components is tempting	 it is a bit simplistic� Even when syntactic
interfaces are compatible	 a typical problem is that interactions or con�icts occur be�
tween individual components� Often	 one needs variations of components	 for instance
regarding the functionality	 the user interface	 or error handling techniques�
The same goal of reusing prefabricated software also motivated the idea of appli�

cation frameworks �JF��	 Lew���� These are generic applications for particular ap�
plication domains� Frameworks can be viewed as program libraries which include a
particular	 but possibly incomplete	 design for the full application	 to be customized
by subclassing and inheritance� In contrast to components	 the internals of a framework

�



are known to the application developer �at least for so�called white�box frameworks��
Similar to components	 some kinds of frameworks	 called black�box frameworks	 can
only be adapted at designated locations�
However	 the goal of integrating all possible variations and extensions into one

system signi
cantly complicates the resulting system� This leads to systems which are
hard to learn	 to use	 and to maintain �Tal���� As stated in �Gam���	 the dependencies
between classes are di�cult to control if the number of classes in a framework grows�

Software Architecture

Software architecture �SG��	 GS�	 HHK���� is the large�scale structure of a software
system� Although there exist several views on software architecture	 typical archi�
tectural components are modules	 classes or objects and their relations� The latter
usually include the logical dependencies	 although sometimes the physical structure of
deployment is covered as well�
Current research focuses on techniques for describing architectures and on devel�

oping reference architectures for particular domains� Typical relations are module or
function usage	 synchronous or asynchronous communication� This gives a static ab�
straction of the data� or control �ow� Except for module structure	 it does however
not present an abstraction of the code structure and its dependencies�
Our contribution can be seen as a particular small�scale software architecture for

describing and composing small services	 called features	 to components�

Design Patterns

Design patterns �GHJV��� have received enormous attention in the last years� The
central idea of patterns is to capture software design which is proven to work in several
existing systems� Certain methodologies have been developed to describe patterns� It
is important to stress that patterns are intended to re�ect only an implementation
idea	 not some speci
c code� In this sense	 patterns only present an �informal abstrac�
tion�� This has the advantage that these are usually more accessible than other formal
descriptions� In turn	 they lack precision and it is not possible to generate code from
the descriptions or to reason formally about patterns�
Design patterns exist on several levels of abstractions� For instance	 there are pat�

terns	 e�g� a layered software structure �BMR���� 	 which can be viewed as architectural
patterns� Others	 sometimes language speci
c ones	 give particular solutions to small
and well de
ned problems�
Although design patterns are a valuable contribution to software engineering	 they

are only helpful on the conceptual level� The reason is that they are not intended to
be used like a program library� In contrast to this	 we aim for general purpose design
principles which are useful as speci
cation and programming language constructs�

�



Functional Programming

Compared to object�oriented programming	 functional programming provides other
kinds of useful techniques for writing abstract	 reusable programs� In particular	 func�
tional programming languages �MTH��	 PHA���� support parametric polymorphism
and functional abstraction� This allows one to write programs with minimal assump�
tions about the used data or program structures	 hence encourage one to write reusable
software� Therefore	 functional languages are well suited for building new functionality
on top of existing ones� They enable a concise and clear programming style	 which
slowly gains acceptance for industrial applications� For instance	 the language Er�
lang �AWV��� is used for concurrent programming in telecommunications�
Our contribution here is to integrate object� and feature�oriented concepts with

functional languages� This is possible with concepts for integrating imperative pro�
gramming �Wad�� and extensions of object�oriented languages �OW����

Feature�Oriented Design

The main contribution of feature�oriented design is to structure objects or components
into small services	 called features� The idea is to develop the features independently
and to specify	 in addition	 their relations for composition �interaction or cooperation�
separately� Compared to object�oriented programming	 inheritance trees with highly
entangled classes can be avoided� Similar dependencies occur with aggregation of ob�
jects into an encapsulating class� We show that feature�oriented structuring generalizes
these techniques and fosters clear and reusable design�
Our design techniques support di�erent speci
cation styles	 high�level functional

prototypes	 and imperative implementations� These three steps form the three main
parts of the work� Our focus is on developing practical speci
cation and programming
language concepts which are oriented towards existing languages�
We demonstrate that feature�oriented design is useful for the formal speci
cation

of object behavior� Our techniques allow one to specify features and their interactions
on di�erent levels of abstraction� These individual speci
cations are then used to rea�
son about the behavior of a composed object� Furthermore	 we discuss when feature
compositions �similar to subclassing� are behavioral re
nements of the individual spec�
i
cations� A re
nement relation is highly desirable in order to guarantee the individual
speci
cations for the composed object as well�
Furthermore	 we consider features which schematically a�ect other features	 e�g� a

feature which locks or disables all other features� As we formalize feature compositions
in an abstract way	 it is possible to specify this in our setting� Another example is an
undo feature	 which revokes the e�ect of other features�
The technical novelty of the speci
cation approach is that we use implicit state in

the form of monads for speci
cation� This allows for abstract speci
cations and eases
re
nement� It also yields a fully functional model of an object�oriented language with
references and virtual functions� In earlier works �JW��	 Wad���	 monads are used to
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write easily modi
able code with stateful features� We go the step beyond and write
easy to compose components� In other words	 we make the possible �modi
cations�
explicit as features�
On the programming level	 feature�oriented programming is a generalization of con�

ventional object�oriented programming	 which generalizes subclassing and inheritance�
Note that we do not have a notion of a �sub��class	 since we only compose concrete
objects from features� On the programming level	 the notion of a feature is similar
to a class	 but without any 
xed class hierarchy and without inheritance As we force
separation of concerns by the proposed programming language concepts	 we can apply
�exible composition concepts� These allow the automatic creation of objects with an
individual selection of features or services	 a main contribution of this work�
Compared to object�oriented techniques	 feature�oriented design is advantageous

for the following reasons�

� It yields more �exibility	 as objects with individual services can be composed from
a set of features� This is clearly desirable if di�erent variations of one software
component are needed or if new functionality has to be incorporated�

� As the core functionality is separated from interaction handling	 it provides more
structure and clari
es dependencies between features� Hence it encourages to
write independent	 reusable code� In many cases subclasses in object�oriented
programs should be independent entities	 and not subclasses in a 
xed hierachy�

� As we consider only interactions between two features at a time	 the programming
model is as simple as possible� Dependencies between several features can usually
be reduced to pair�wise interactions between features�

Compared to object�oriented programming	 where classes of objects are developed
in an incremental manner	 we just compose objects from a set of features	 which replace
classes� This approach was motivated by the recent interest in feature interactions in
telecommunications� The crucial point is that some features may interact and have to
be adapted in the presence of each other� This idea will be used for a novel approach
to object�oriented programming�
We present feature�oriented programming in two di�erent language settings� An

exposition of feature�oriented programming as an extension of an imperative language	
namely Java	 is shown in Chapter �� This also includes a detailed comparison to object�
oriented programming� Feature�oriented programming in a functional language with
monadic state is presented in Chapter ��

How To Read This Thesis

In the spirit of feature�oriented design	 the three parts of this thesis can be read inde�
pendently� Clearly	 the interactions between them are stated explicitly� Only Chap�
ters � and � build upon each other� Chapter � and Chapter � present feature�oriented
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programming in a functional and	 respectively	 an object�oriented language� The two
chapters contain comparable programming techniques	 but in di�erent settings and
with di�erent emphasis� Chapter � is mainly intended to support the earlier two chap�
ters and uses advanced functional programming concepts� Chapter � extends common
object�oriented languages and includes further discussions and more examples� There
is some intended overlap between Chapters � and �	 as well as both Chapters � and ��
Several parts of this thesis have been published at conferences on �object�oriented�

programming �Pre��a	 Pre��b	 Pre��c� and telecommunications �Pre��d��
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Chapter �

Introduction

In this chapter	 we introduce the main ideas and contributions of this work� The basic
concepts are introduced in the next two sections� The following sections present the
main topics	 feature speci
cation and programming concepts� We cover these here in
reverse order as in the following main chapters� The reason is that the order is not
essential	 as the speci
cation and programming parts can be read independently

��� Features and Feature Interactions

Features are individual services o�ered by objects� That is	 objects consist of a set
of features which partition their functionality� A feature has a syntactic interface	
an intended semantic behavior �a speci
cation�	 and one or more implementations�
Some features are only sensible in a particular system	 others are self contained and
meaningful in isolation�
While individual features are often easy to understand	 their combination	 partic�

ularly if their number is large	 often creates new problems� This is called feature in�
teraction and is de
ned in telecommunications research as follows �taken from �KV�����

A feature interaction occurs when the behavior of one feature is a�ected by
the behavior of another feature �or another instance of the same feature��

The conceptual framework developed in this application domain serves as the starting
point for our design method which generalizes object�oriented programming�
In the area of telecommunication and multimedia service development	 the problem

of feature interactions has received considerable attention �BDC���	 Zav��	 BV��	
CO��	 Din���� In this application area	 the problem of feature interactions stems
from the abundance of features telephones and switching systems have� For instance	
consider the following telephone features�

� ICS �incoming call screening�

� Forwarding of calls
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Although both features are simple when considered in isolation	 there is a con�ict�
Assume B forwards calls to his phone to C� C screens calls from A �ICS	 incoming
call screening�� Should a call from A to B be screened by C� For many other ex�
amples we refer to �CGN����� From the abundance of features and interactions in
telecommunication systems	 we can identify two typical classes of interactions�

� Resource con�icts or priorities between features� This is addressed in our ap�
proach by composing features in layers	 where the outer layers have precedence
over the inner ones�

� Extension of functionality is required due to the presence of other features� In
object�oriented implementations	 these extended requirements are resolved via
method rede
nitions�

A similar problem of �exible services occurs in groupware applications	 as shown
in �Tee���� For feature interactions in a larger application context see �Rya���� Al�
though most examples cover features which are relevant to the user	 some of them
may also deal with internals like resource management or communication with internal
components�
While many research e�orts in telecommunications focus on detecting interactions

in this particular domain	 we aim here at more general design principles� The main
contribution of this work is to show that designing complex software components in
terms of features improves existing techniques	 from both practical and technical sides�
In particular	 we claim that feature�oriented design is preferable over incremental de�
velopment with usual object�oriented techniques like the inheritance relation between
classes�
In general	 feature interactions can occur between a set of objects� The main idea

for making this approach practical is to consider only interactions between two features
at a time� In case some interaction only occurs with more than two features	 it is usu�
ally possible to redesign the feature combination� For instance	 introducing auxiliary
features can reduce dependencies� Hence we argue that this assumption su�ces in most
cases and is the key to use the ideas as programming language concepts� For general
purpose languages	 one has to balance expressiveness with conceptual simplicity and
often e�ciency�

��� Feature�Oriented Design

We discuss in the following the main concepts and the general issues of feature�oriented
design� Our contributions cover the formal speci
cation of features as well as program�
ming language concepts for implementing features� Although the latter can be used
without the former	 both complement each other�
For the speci
cation of features	 we separate feature speci
cations from the speci�


cation of their interactions� For the composition of several feature implementations	

�



we want that the individual speci
cation and interaction speci
cations hold� A typ�
ical problem is that speci
cations are overly speci
c	 which can lead to unintended
and unnecessary inconsistencies with other feature speci
cations� For this purpose	 we
develop speci
cation styles which avoid overspeci
cation� As another solution	 abstrac�
tion concepts help to establish an individual speci
cation for a feature combination in a
re
ned way� These abstraction concepts have to be in line with the programming�level
feature and feature combination concepts� The reason is that abstraction and re
ne�
ment concepts often take the computational structure of the feature implementation
and combination into account� For instance	 a typical abstraction to establish proper�
ties of a composed object is to disregard the state of all other feature implementations�
Another example are exceptions	 as discussed in the last section�
On the programming level	 we propose a feature combination technique which allows

one to construct objects from individual features in a fully �exible and modular way� Its
main advantage is that objects with individual services can be created just by selecting
the desired features	 unlike object�oriented programming� A feature implementation is
similar to an abstract class and consists of a base implementation which is characterized
as follows�

� It adds functionality to an object �new methods��

� It may add local state to the object �new instance variables��

� It may assume that the extended object provides other features �similar to im�
porting modules��

The main di�erence to classes in object�oriented languages is that we separate the core
functionality of a subclass from overriding methods of the superclass� We view over�
riding more generally as a mechanism to resolve dependencies or interactions between
features	 i�e� some feature must behave di�erently in the presence of another one� For
this purpose	 we need to provide lifters	 which adapt a feature to the context of another
feature by overriding methods� This leads to a new view of inheritance	 as feature in�
teractions are resolved between two features at a time� In contrast	 inheritance may
override the methods of all superclasses�
In the following	 we 
rst introduce the novel programming concepts	 followed by

the speci
cation techniques� Depending on the context	 we often refer to a feature
speci
cation or feature implementation simply by the word feature�

��� Feature�Oriented Programming

We introduce feature�oriented programming in the following as a generalization of
object�oriented programming� A major contribution of object�oriented programming
is reuse by inheritance or subclassing� Its success and its extensive use have led to
several approaches to increase �exibility �mix�ins �SCD���	 BC���	 around�messages
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in Lisp �LM���	 class refactoring methods �OJ���� and to approaches using di�erent
composition techniques	 such as aggregation and �abstract� subclasses�
Our new model supports many of the above concepts as well as generalizes object�

oriented concepts such as inheritance and and aggregation� In addition	 it includes
many of the above mentioned extensions and new concepts� Instead of a rigid class
structure	 we write features which are composed appropriately when creating objects�
The main di�erence is that we separate the core functionality of a subclass from over�
riding methods of the superclass� We view overriding more generally as a mechanism
to resolve dependencies or interactions between features	 i�e� some feature must behave
di�erently in the presence of another one� Without addressing interactions	 the idea of
structuring objects into small	 coherent parts was suggested in �LA��� and developed
further for reasoning about programs in �SG����
We resolve feature interactions by lifting functions of one feature to the context

of the other� A lifter	 also called adaptor or modi
er	 adapts the functions of one
feature in the presence of another one� Similar to inheritance	 this is accomplished by
method overriding	 but lifters depend on two features and are separate entities used
for composition� In contrast	 inheritance just overrides methods of the superclasses�
Our new model allows one to create objects with individual services just by selecting

the desired features	 unlike object�oriented programming� Hence feature�oriented pro�
gramming is particularly useful in applications where a large variety of similar objects
is needed� Examples are generic frameworks or libraries which can be used in di�erent
applications in various ways or in application domains which by nature require many
variations� For the former	 we present a small example of a generic data structure� for
a larger example we refer to �BSST���� The area of telecommunication software is by
now a prominent example of a rapidly evolving application domain which sparked the
research of feature interactions� An example from this area is shown in Section ������
The main novelty of this approach is a modular architecture for composing features
with the required interaction handling	 yielding a full object�
To demonstrate our speci
cation techniques	 we use a small running example mod�

eling simple data structures with the following features�

Stack providing push and pop operations on a stack

Queue providing enqueue and dequeue operations on a queue�

Counter which adds a local counter �used for the size of a data structure��

Bound constraining the elements of a data structure to a certain size

Undo adding an undo function	 which restores the state as it was before the last
access to the object�

Lock disallowing operations on a object
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Clearly	 these features are not independent� For instance	 when adding the counter	
the functions push and pop must	 in addition	 increment or decrement the counter�
With traditional inheritance	 this is achieved by overriding methods and by possibly
calling the method of the superclass� This is done here via lifters�
Note that the above informal feature speci
cations are not precise and in particular

do not clarify their interactions� For instance	 the counter is used to count the number
of stack elements� We view this dependency as an interaction which we will specify
appropriately� Many other interactions exist	 particularly for undo and lock	 which will
be considered in later chapters�
On the programming level	 it is possible to create a stack or a queue with a cus�

tomized selection of the other features� For instance	 one can create objects with the
following features�

� Stack with Counter and Undo� In this combination	 the counter is used to main�
tain the number of stack elements� The undo functionality has to undo not only
the stack operations	 but the added counter as well�

� Queue with Undo and Lock� For this combination	 one has to decide if undo has
precedence over lock or vice versa� This means that either undo can revoke the
locking	 or locking disables undo�

� Stack with Counter	 Bound and Undo� This combination has interactions be�
tween Bound and Undo	 since the bound feature disables inserting elements which
are too big� In case an element is not added to the stack due to the size check	
what happens if this is followed by an undo operation� Shall we undo an �empty�
operation�

The program language techniques required for such �exible combinations will be dis�
cussed in Chapters � and ��
Note that other features which occur in existing data structure libraries are quite

similar in nature� Clearly	 all the above features can be used on other data structures	
like sequences	 bags or maps� For instance	 in the Java �GJS��� class library similar
variations of data structures with hash functions	 orderings and enumerators can be
found�
In an object�oriented language	 one would extend a class of stacks by a counter

and proceed similarly with the other features� Usually	 a concrete class is added onto
another concrete class� We generalize this to independent features which can be added
to any object� For instance	 we can create a counter object with or without lock�
Furthermore	 it is easy to imagine variations of the features	 for instance di�erent
counters or a lock which not even permits read access� With our approach	 we show
that it is easy to provide such a set of features with interaction handling for simple
reuse�
In general	 an exponential number of di�erent combinations is possible� In case of

speci
cations	 we similarly conjoin speci
cations for features and their interactions to
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Figure ��� Typical Class Hierarchies

customized combinations� For combining speci
cations	 we need to re
ne some feature
speci
cations in order to account for a more specialized setting�
With feature�oriented programming	 we need a method to compose implementations

for features and interaction handling� In our model	 a feature repository replaces the
rigid structure of conventional class hierarchies� Both are illustrated in Figures ��
and �� The composition of features in Figure � uses an architecture for adding
interaction resolution code	 which is similar to constructing a concrete class hierarchy�
To construct an object	 features are added one after another in a particular order� If
a feature is added to a combination of n features	 we have to apply n lifters in order
to adapt the inner features� As we consider interactions of two features at a time	
there is only a quadratic number

�
n

�

�
� n��n

�
of lifters	 but an exponential number�

n

k

�
� k � �� � � � � n of di�erent feature combinations can be created� For instance	 in the

above example	 we have � features with �� interactions and about �� sensible feature
combinations� This number grows if di�erent implementations or variations of features
are considered �e�g� single� or multi�step undo�� The observation that most interactions
can be reduced to interactions between two features at a time is a major premise of
this approach� This is discussed in more detail in Section ����
We show that feature�oriented programming generalizes object�oriented techniques

and gives a new conceptual model of objects and object composition� To support this	
we will show how to create Java �GJS��� code for concrete feature selections	 
rst using
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inheritance and then using aggregation and delegation� This explains the relation with
known techniques and compares both techniques� In fact	 we will show two cases where
aggregation is more expressive than inheritance	 re
ning earlier results �Ste����
Other contributions include parametric features	 similar to parametric classes	 and

generic method rede
nitions� An interesting observation is that interactions can also
appear	 for parametric features	 on the type level� We will examine cases where type
parameters of classes have to adapt under feature composition� This is the case if the
functionality and the syntactic interface of a feature depend on other features� In many
cases	 the adaption process for a feature is generic for each method	 e�g� for the lock
feature	 all other methods are disabled� This is possible with generic lifters�
In the following section	 we explain the architecture for composing features and

lifters	 which is the main idea of feature�oriented programming�

��� Feature Composition and Lifters

In object�oriented programs it is customary to override methods of a superclass in a
subclass in order to adapt them to a more specialized setting� We view overriding more
generally as a mechanism to resolve dependencies or interactions between features	 i�e�
some feature must behave di�erently in the presence of another one� For this purpose	
we need to provide lifters	 which adapt a feature to the context of another feature by
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overriding methods� This leads to a new view of inheritance	 as feature interactions
are resolved between individually two features� In contrast	 inheritance just overrides
the method of the superclass�
We start with a well�known example to introduce the basic adaption techniques�

Consider the stack and counter features of the above feature set� For each feature
we 
rst de
ne an interface	 followed by an implementation	 as shown below� We fol�
low Java �GJS��� syntax	 except for feature de
nitions	 which replace class de
nitions�
Features consist of an interface and a feature constructor	 here SF and CF� �In gen�
eral	 there can be more constructors for one feature	 but this is not relevant here��
The constructors are written similar to class de
nitions	 except for the new keyword
feature�

interface Stack �

void empty���

void push�char a��

void push��char a��

void pop���

char top���

�

feature SF implements Stack �

String s � ���

void empty�� �����

void push�char a� � ��� ��

���

�

interface Counter �

void reset���

void inc���

void dec���

int size���

�

feature CF implements Counter �

int i � 	�

void reset�� �i � 	� ��

void inc�� �i � i
�� ��

���

�

In addition to the individual speci
cations	 we have to consider interactions� In this
case	 we adapt the stack operations in the presence of the counter� This is done by
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a lifter	 which rede
nes the stack operations in order to use the counter	 written as
follows�
In the following code	 the new keyword lifts states that some implementation of

the stack interface is rede
ned in the presence of the constructor CF� It is important
that we do not rede
ne just a single implementation	 but specify this for all stack
implementations� This enables repeated adaptations�

feature CF lifts Stack �

void empty�� �this�reset��� super�empty�����

void push�char a�

�this�inc��� super�push�a� ���

void pop�� � this�dec��� super�pop�� ���

�

In a conventional object�oriented program	 one would construct the counter as a sub�
class of stack and do the rede
nitions directly� Although this may seem to be su�cient
for small examples with a few features	 we favor the separation of these code pieces� In
turn	 they can be combined in a �exible fashion� For combining more than two features	
we need a suitable feature combination architecture� �The composition architecture is
trivial for the above example with two features��
We show in Figure �� an example for a feature composition with liftings	 many

more combinations are shown in Section ���� In this example we 
rst add the counter
to the basic stack� For this new object to support the stack feature	 we have to lift
the functions push and pop	 indicated by arrows in the box denoting the lifting� This
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gives	 like inheritance	 a new object with two features	 consisting of the inner two boxes�
Since there are interactions between the two features	 we must provide individual lifters
for push and pop� Otherwise	 one can use the default ones for composing orthogonal	
independent features�
With the undo feature	 we proceed in the same way	 although undo is inherently

more complicated� The goal is that undo can be added to any feature combination and
undo works with all selected features� Hence undo has to undo the stack operation	
the counter and possibly other features� The idea of our simple and �exible undo
implementation is to save the local state of the full object each time a function of
the other features is applied �e�g� push	 pop�� In this sense	 undo is generic wrt all
other features� The undo feature depends essentially on all �inner� features	 since it
has to know the internal state of the composed object� This multi�feature interaction
is solved by an extra feature	 which allows to read and write the local state �which
is not shown here�� Since the state depends on the feature combination	 the typing
for state access functions depends on this as well� This dependency can be described
by type relations between features	 which are expressed as interactions� With these
expressive type concepts	 a statically typed undo feature is easily implemented and is
polymorphic in the state of the inner features� Apart from the typing issues	 the undo
feature works with the same feature composition scheme shown earlier� The functions
push and pop are lifted again to undo	 now with the lifter from stack to undo�
In the above example	 there are two lifters needed �two boxes� for adding undo

to the object with counter and basic stack features� This is the main di�erence to
inheritance	 where a concrete class undo would extend a class with counter and stack
and would rede
ne some of their functions� Whereas all this happens	 conventionally	
in one subclass	 it is divided into three entities in our approach� one feature and two
lifters� Note further that lifting push and pop to undo does not depend on the counter�
only the lifted versions of push and pop are lifted again by a lifter which depends on
undo and basic stack�
It may appear that dependencies are described by a lifting from one concrete feature

to a new feature� This is however not su�cient	 as can be seen in the above example�
The point is that a lifter can be used to adapt any component which has this feature�
More formally	 we have the following� for any object having the set of features A	 we can
add feature b and lift the functions of each feature in A individually to the new context�
Then we have an object which provides b as well� For instance	 in Figure ��	 the lifter
which adapts the stack functionality to undo can be used to adapt any combination
which includes the stack� In Figure ��	 it is used for adapting a counter plus stack
object	 but it is equally possible to apply it to the stack directly�
Using the structure of liftings	 it is easy to model classical inheritance� Consider

adding a feature b to an object with a set of features A� To obtain a concrete subclass	
one has to merge the code of the feature a with all the lifters from a � A to b in
the appropriate way� Repeating this for all features	 we can create a concrete class
hierarchy for a particular object composed from some features� This amounts to the
main di�erence to inheritance�
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��� Functional Feature�Oriented Programming

A fully functional model of an object�oriented language using the above concepts is
presented in Chapter �� In the functional setting	 we compose features with the appro�
priate interaction handling using the type system of a particular functional language	
namely Gofer �Jon���� The �exible composition of features is achieved by advanced
concepts of functional programming	 such as monads and monad composition tech�
niques �Mog���� This also presents a concrete model of the monad constructions used
for speci
cation	 as discussed later� For this integration	 no language extension is
needed and both programming styles can be used interchangeable�
In our functional setting	 �constructive� functional speci
cations are executable	

jointly with imperative ones� This gives a convenient implementation and prototyping
language	 which is close to speci
cations� It allows one to use object�oriented techniques
while preserving the bene
ts of a functional language with higher�order types�
Furthermore	 we demonstrate that type systems of current functional languages can

express the concepts needed for feature�oriented programming� For instance	 we model
so�called binary functions �BCC����	 which express that two object types are exactly
of the same �sub��type� For instance	 a copy function returns an object of exactly
the same type� Binary functions are modeled here by adding a type parameter� This
embedding gives a type inference algorithm for features	 with only a few restrictions�
Our concepts are implemented in Gofer and generalize some monadic programming

techniques	 where objects correspond to monads	 features to monad transformers	 and
feature interactions are resolved by lifting functions through monad transformers�

��� Imperative Feature�Oriented Programming in

Java

Feature�oriented programming in an imperative setting is presented in Chapter �� In
particular	 we show how an existing language	 namely Java	 can be extended to sup�
port feature�oriented programming� Since some of the earlier concepts are simpli
ed
and restricted for this integration	 this version of feature�oriented programming is eas�
ier to use� This in turn gives an ideal implementation platform for feature�oriented
development�
We show that Java is easily extended to feature�oriented programming� In this

extension	 we discuss the typing and composition problems of features and interac�
tions� This provides for an imperative implementation language	 which integrates
feature�oriented programming in Java� Our extensions are de
ned via direct trans�
lation to plain Java via inheritance or aggregation� This delineates the relation to
object�oriented concepts and in addition gives a detailed comparison between inheri�
tance and aggregation� We show that aggregation is more expressive for some more
advanced composition concepts�
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The translation via inheritance builds a concrete class hierarchy for each used fea�
ture combination� In this class hierarchy	 the features and interactions are merged�
Similarly	 the translation via aggregation composes the features and the interactions
into a class with delegate objects for each feature� This provides for a close link with
object�oriented programming and allows the use of tools	 e�g� debuggers	 developed for
these languages�
We model more advanced programming concepts via Pizza �OW��� �which includes

a translation to Java�� Pizza extends Java by several key ingredients of functional lan�
guages� These include parametric polymorphism	 data type declarations with pattern
matching �or class cases in object�oriented parlance�	 and higher�order functions� With
these extensions	 we are able to add the advanced type and composition concepts for
features developed in Chapter �� The chapter concludes with several examples covering
variations of design patterns	 telecommunication applications and groupware systems
modeled by automata�

��	 Feature�Oriented Speci
cation

We outline in the following our speci
cation concepts for feature�oriented design� The
goal of this section is to show that abstract speci
cations of complex objects can be
composed from individual feature speci
cations plus the interaction speci
cation� The
detailed treatment in Chapter � focuses on the simpler case of just specifying a single
object	 whereas Chapter � covers the more di�cult case of object networks�
The speci
cation of composed objects is important in several ways� For the devel�

opment of software components in a precise way	 modular speci
cation techniques are
helpful for capturing requirements� Similarly	 the user of a component	 e�g� in a pro�
gram library	 wants to understand the exact behavior of a component without reading
the detailed source code� In this case	 speci
cations are used for precise documentation�
The main contributions of our speci
cation techniques for sequential	 stateful ob�

jects are explained in the following�

Speci�cation Styles

Our techniques allow the speci
cation of features and their interactions on di�erent
abstraction levels� We use behavioral speci
cation with implicit state	 which just
express equalities between operation sequences	 in the style of algebraic speci
ca�
tions �Wir��	 EM���� Alternatively	 our model permits state�oriented speci
cations
which directly talk about the e�ect of an operation on the state� These are similar
to Hoare calculi with pre� and postconditions �Hoa���� In both cases	 our techniques
admit equational reasoning about imperative programs�
We specify the behavior of objects by equations between programs� As an example

of a behavioral speci
cation consider the following speci
cation of a stack	 where push
x adds an element x and top returns the top element� Observe that the notation di�ers
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from the imperative version presented earlier� For simplicity	 the object on which these
operations work on is kept implicit�

push x� top � push x� result x

This equation states that the two computations produce the same result and have the
same e�ect on the state� Note that result is the operation which only returns its
parameter as the result of a computation� It is important to stress that we cannot
simply write result x on the right� Since operations modify state	 equality also has
to consider the �implicit� state�
It is instructive to compare this to a state�oriented speci
cation of push	 which

assumes a concrete implementation using lists� This speci
cation assumes a mutable
variable of type �Int�	 which can be accessed via a function get�list� The e�ect of
push can then be expressed by comparing the state before and after its execution� We
write this as a context equation	 which states that after reading the state and executing
push	 the following equation between programs holds�

l � get�list� push x �� get�list � result �x �� l�

Note that we write l � get�list to assign the result of the function call to the
locally bound variable l� The equation expresses that the state has changed to x��l	
which denotes the list with l appended to x�

Interaction Speci�cation

In addition to the individual feature speci
cations	 we have to specify how a feature
behaves in the presence of another� The simplest case is when two features are fully
independent� Typically	 independent features work on di�erent parts of the state and
operations of the two features can be treated separately� For instance	 we can reorder
operations of the two features	 as the order of two independent operations is immaterial�
Our design goal is that the speci
cation of interactions only adds new information

about a component without invalidating the individual speci
cations� Thus	 feature
speci
cations and interaction speci
cations complement each other�
In case of an interaction	 we have to specify how a component with both features

works� This can be realized in speci
cations as follows� The feature speci
cations de
ne
properties of operation sequences which only contain operations of a single	 individual
feature� In turn	 the interaction speci
cations also cover �mixed� operation sequence�
Assume for instance the above stack speci
cation and the counter feature� The counter
has functions inc and size etc to increment and	 respectively	 read the counter value�
The interaction with the counter is a particular cooperation� the counter is intended
to count the stack elements� We specify this by the following context equation�

c � size� push x �� size � result c
�
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This speci
cation applies to components which have both features �but possibly more��
It speci
es a relation between both features� To ful
ll this speci
cation	 an implemen�
tation may add extra functionality �via method rede
nitions� to push �i�e� incrementing
the counter�	 as shown earlier� In addition to the above	 we have to assure that the
individual speci
cations still hold for the feature combination	 which is in general not
the case� This problem is considered below under the heading re
nements�

Generic Features

Another contribution are speci
cation concepts for generic features� These are fea�
tures which a�ect others in a schematic way� Examples are the undo or lock features�
Both can be speci
ed	 formally and informally	 by referring to a set of features without
knowing details of the other features� For instance	 lock is informally de
ned as dis�
abling other features� We show that such informal statements can often be expressed
by high�level speci
cations in a concise way� This is possible via generic access to state�
Many generic features can be speci
ed in terms of the �abstract� state access of other
features� More technically	 these features are polymorphic in the state of the inner
features�

Re�nement Principles

Our goal is to obtain the speci
cation of a feature combination by composing indi�
vidual features� The easy way to do this is to conjoin the individual speci
cations
plus the interaction speci
cations� Unfortunately	 it is not always the case that the
individual speci
cations can be used as is� This problem occurs in case of con�icts �in
speci
cations� between features� For instance	 the lock feature is intended to disable
other features� Hence the laws may not hold as before� Another example is the bound
feature	 which restricts the stack elements to be of a certain size�
Our contribution is to identify the typical cases of re
nements and to develop formal

re
nement concepts� The idea is that some speci
cation laws may only hold under some
abstraction� Typically	 one uses abstractions on the state to show that laws hold� The
main bene
t of our approach is that typical abstractions can be de
ned using the types
of objects� Since in our case the types of objects represent the feature combination
structure	 is it possible to write schematic abstractions suitable for feature� and object�
oriented programs�
However	 �conventional� abstractions are not su�cient in some practical cases� For

instance	 there is no abstraction on the state to show that a bounded stack ful
lls the
stack laws� The problem is that the laws do not hold for out�of�bound elements	 which
cannot be inserted� A common solution for this problem is conditional re
nement	
which expresses a global condition on the usage of some feature� In this example	
we need the condition that the stack is only used with elements ful
lling the size
restrictions� It is however not practical to verify this for each particular usage�
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Our solution to this problem is a simple application of our underlying computational
model� As we model exceptions	 we can de
ne re
nement modulo exceptions� In this
approach	 the bounded stack raises an exception if an element is inserted which is too
big� The re
nement	 similar to partial correctness	 states that the speci
cation holds
unless an exception occurs� The main advantage of this techniques is that we do not
need to verify the conditions for every usage� If no exception occurs	 we can be assured
that a program with a bounded stack has produced correct results� This is important
for semantic subtyping	 as discussed below� On the other hand	 this does not show
that no exception occurs� This is usually not possible for all programs using stacks	
but has to be done for each concrete usage� In this case	 we still have to verify the
conditions	 which can be di�cult�

Semantic Subtyping

While in object�oriented programs subclasses create subtypes	 in our setting subtypes
are induced by set inclusion of feature combinations� Thus	 an object which implements
more features than another one is a subtype of it� The idea of subtyping is that a
subtype object can be used at any place where a supertype can� This syntactic rule
should be re�ected by semantic properties� Thus	 if we know what a procedure does	
we can use the procedure with a subtype and still get the same behavior� This is
however not the case in general� In the disguise of features	 we address the typical
speci
cations problems of object�oriented systems with behavioral subtyping �Ame��	
LW��	 DL��	 LW����
In order to guarantee well�behaved subtyping	 we use the restriction to conservative

rede
nitions� Informally speaking	 these rede
nitions only allow to add extra behavior	
but no modi
cation of existing behavior� We present a result which is similar to the
ones in �DL��	 LW���	 but is based on conservative rede
nitions� We claim that the
notion of conservative rede
nitions is practical and su�cient for our methodology� It is
in general weaker than the much more involved techniques in �DL��	 LW���� However	
our results go beyond current ones for the case of homogeneous object networks and
for the case of exception handling� With abstraction over exceptions	 we can establish
a subtype relation as sketched in the last section�

Virtual Functions

The notion of virtual functions as in object�oriented programs extends naturally to
our setting� Virtual functions are bound at run time	 depending on the actual sub�
class�feature combination� For modular design	 we want to specify features individu�
ally without referring to other features of an object� For virtual functions	 the actual
behavior however depends on the added features	 which can rede
ne methods�
For speci
cations purposes	 virtual methods in a feature can be interpreted by an

assumption on the full object	 which is composed of several features� When creating





an object	 this assumption can be discharged� For technical reasons	 it is practical to
model this with a global object store	 as discussed below�
Our technique for the speci
cation of virtual functions is the same as for semantical

subtyping� We use an abstraction function to ignore other features and just specify
virtuals partially by the e�ect of the virtual function on the actual feature of concern�
In case of conservative method rede
nitions	 we are assured that the local behavior is
not changed	 only extended�

Object Networks

We show in Chapter � that the main results for individual objects of Chapter � also
hold for systems with linked objects� For this inherently more di�cult case	 some
results are harder to obtain and have to be restricted somewhat�
To accommodate a set of objects	 we use a dedicated data type for object identi
ers�

Furthermore	 the object state is replaced by an indexed set of objects �which is still
kept abstract via monads�� By convention	 each operation takes an object identi
er as
the 
rst parameter	 which represents the object it works on� This is usually written in
di�erent	 �message passing� or record selection syntax in object�oriented programs�
In the presence of linked objects	 some speci
cations	 particularly with invariants	

are tedious to model with our speci
cation style� For instance	 to maintain the invariant
that two objects are not reachable by some reference chain	 it is usually easier to reason
about predicates specifying this property instead of reasoning about algorithms which
determine such reference chains� For this case	 we show that we can integrate common
predicative speci
cations with quanti
ers� As we use these only for invariants	 these
can be integrated smoothly�

Monads for Speci�cation

The technical novelty of the approach is that we use implicit state in the form of
monads for speci
cation� We focus on two particular monads	 state transformers and
error monads	 which are used to model exceptions� We show that speci
cations with
implicit state enable abstract	 high�level speci
cations� These are useful for modeling
feature interaction �or inheritance� as re
nement	 similar to behavioral subtyping and
data�type re
nement concepts�
With monads	 we can give a simple feature�oriented computational model which

includes most object�oriented language concepts� We build upon parametric polymor�
phism and a mechanism for function overloading	 as used in the functional languages
Gofer and Haskell� We need more advanced concepts such as type constructors and
dependent types for the global object store and for the used monads�
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��� Related Work

Since we cover the full range from speci
cation to programming techniques	 there is
an abundance of literature	 particularly for object�oriented programming� Most of the
relevant literature falls into the categories of the following two sections	 object�oriented
programming and speci
cations�
The work on feature interactions largely concentrates on detecting interactions and

on interaction avoidance� A similar problem of �exible services occurs in groupware
applications	 as shown in �Tee���� The approach there covers a wider range of issues	
such as dynamic change of services at run time and aims at con
guration by the end�
user� In contrast to our approach	 �Tee��� does not consider interaction resolution	
e�g� by adapting functionality as done here�
Note that our notion of features is not related to the notion of features of an

object in Ei�el �Mey�� or other languages� Furthermore	 feature�oriented domain
analysis �KCH���� is a technique for requirements analysis which aims for a similar
structuring into features but on a more informal level with di�erent goals�

����� Extensions of Object�Oriented Programming

We compare the feature model to other approaches and discuss some particularities of
our approach below� Although there exist other approaches on class composition and
inheritance	 we argue that the feature model provides maximal �exibility �with static
typing� and is as simple as possible�

� Mixins �BC��� have been proposed as a basic concept for modeling other inher�
itance concepts� Mixins are similar to classes which can be added in a �exible
fashion like features� The main di�erence is that we consider interactions and
separate a feature from its interaction handling� If mixins are used also as lifters	
then the composition of the features and their quadratic number of lifters can be
done manually in the appropriate order� Instead	 we can just select features in
our approach�

� Method combination with before	 after and around messages in CLOS �LM���
follows a similar idea as interactions� As with mixins	 this does not consider
interactions between two classes�features and gives no architecture for compo�
sition of abstract subclasses� Such after or before messages can be viewed as a
particular class of interactions�

� Composition 
lters have been proposed in �BA��� to compose objects in layers	
similar to the ordering of features in our approach� Messages are handled from
outside in by each layer� The main di�erence is that we consider interactions on
an individual basis and separate a feature from interaction handling�

� Merging di�erent aspects	 functional and non�functional	 of a software system is
pursued by aspect oriented programming �KLM����� This can be viewed as an
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even more general approach than feature composition	 but is so far pursued only
for certain application domains� We think that feature�oriented programming
can contribute to a more general theory of aspect composition�

� Several other approaches allow to change class membership dynamically or pro�
pose other compositions mechanisms �MMPN��	 US��	 Fr�o��	 SPL��	 Mez����
One of the main ingredients for feature�oriented programming	 lifting to a con�
text	 can also be found in �SPL���� All of these do not consider a composition
architecture as done here	 and address other problems	 such as name con�icts�
Due to dynamic change	 static typing can be problematic� Clearly	 the idea of
features can also be applied to dynamic composition	 but this remains for future
work�

� Subject�oriented programming �HO��� has been proposed as a model for captur�
ing di�erent views or roles of the same object� Feature�oriented programming
can contribute to this idea as a composition technique	 as di�erent views may
clearly interact�

� Role based design and implementation is studied in �Van���� The exposition
however only covers layered composition	 but no notion of interactions� �Except
for our notion of lifters	 which is already quoted and discussed there�� Clearly	
interactions can be treated as extra layers	 which is however not practical for
larger compositions�

� Design patterns appear similar to feature�oriented design	 as they try to capture
good design solutions� It is possible to view the feature composition concepts
developed here as a particular design pattern� However	 feature�oriented pro�
gramming aims at di�erent goals� First of all	 it is our goal to compose features
automatically	 not to implement for each used feature combination individually�
Second	 this view only considers implementation but not design techniques for
feature combinations �as e�g� shown in Section ����

We view feature interactions and feature composition as a design principle which
deserves explicit language support	 similar to inheritance� Also	 we can use
feature�oriented design to implement a �exible and adaptable design pattern li�
brary	 as sketched by a few examples in Section ������

� Frameworks have been discussed in the last chapter� A main problem of frame�
works is that the dependencies between classes are di�cult to control �Gam����
Furthermore	 frameworks often leave little �exibility due to a monolithic class
hierarchy which is often di�cult to apprehend�

� Another approach to �exible software libraries using code generators was pre�
sented in �BSST��	 BG���� This approach also uses layers for composition	 but
does not consider interactions between components�
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Intentional programming �Sim��� follows similar goals	 also with an emphasis on
domain speci
c program optimizations�

����� Speci�cation Techniques

There are surprisingly few approaches to the actual speci
cation of object�oriented
programs� For instance	 �DL��	 LW��� apply state�oriented speci
cation to object�
oriented systems� Other approaches which use explicit state �in the style of Hoare
calculi �AL���� or predicate transformers �MS���� The latter focuses more on calculi
and re
nement concepts� The most interesting results	 from our point of view	 are
the results on semantic subtyping in �LW��	 DL��	 Ame��	 LW���� We will redo and
extend these in several respects	 as mentioned earlier�
Concerning semantics of object�oriented programs	 there is a large variety of elab�

orated semantical descriptions and logics� As most of these semantical descriptions do
not consider more practical speci
cation problems	 such as re
nement and semantical
subtyping	 we only discuss a representative selection of the existing literature� For in�
stance	 �KR��� compare operational and denotational semantics of object�oriented lan�
guages� Among the many other approaches	 �SJE��	 Ehr��� give a semantical model for
object�oriented languages based on temporal logic� An abstract description of object�
oriented systems using terminal algebras can be found in �Jac��a	 Jac��b�� In contrast
to the latter	 we do not talk about semantic equality of classes� Our goal is to specify
the behavior of concrete objects via features�
Type theoretic approaches	 e�g� �AC��	 Cas��	 BCC���	 PT���	 aim at modeling

object�oriented phenomena in a logical calculus� Although this is needed for any real�
istic speci
cation language	 these approaches focus on expressive typing systems and
type inference for object�oriented languages� Furthermore	 many of these works are
not concerned with mutable variables�
Our speci
cation style with implicit state is not new	 but the usage of monads with

the extensions considered here is new� Our type of behavioral speci
cations is called
operation speci
cations in Raise �RAI��� A similar technique is used in �WP���	 called
trace speci
cations� Both approaches do not consider the application to object�oriented
systems and the extension to exceptions� There exist other formalisms �KPR��� which
focus on state�based speci
cations of interactive components with asynchronous com�
munication� Although features and �some� interactions can be semantically determined
in �KPR���	 no systematic method for interaction handling and composition is consid�
ered�

����� Summary of Contributions

Our main contribution is feature�oriented design	 which we treat in the context of for�
mal speci
cation and programming languages� The main bene
ts of our novel structur�
ing concepts are clarity between feature dependencies and therefore better reusability�
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We claim that these improve object�oriented techniques such as inheritance and ag�
gregation	 which is also supported by many examples� Our main contributions to
feature�oriented design are as follows�

� Our feature composition architecture from which we can generate code for cus�
tomized feature selections� For a set of features	 an exponential number of di�er�
ent feature combinations is possible	 assuming a quadratic number of interaction
resolutions�

� Modular speci
cation and reasoning techniques which use the structure of fea�
tures and their interactions� Thus the behavior of components with several fea�
tures can be determined from the individual feature behavior�

We show that a wide range of concepts	 techniques and technical results can be gener�
alized to this new paradigm� For speci
cation and programming languages	 we cover
several concepts of object�oriented languages in a more general setting� These include
subtying	 virtual functions and exceptions� In this way	 several novel contributions
appear� These are summarized in the following�
Several interesting kinds of features and interaction patterns have been developed�

� Generic features	 which extend a set of other features in a schematic way based
on generic state access� Prominent examples are the lock and the undo feature�

� Parametric features with type dependencies between features are examined� This
shows that the idea of interactions is valuable also on the type level�

� Features with exceptions add new �exibility in programming and speci
cation�
The novel idea for programming is that exceptions can be added or omitted for a
program as needed� For speci
cation	 they can ease the speci
cation of programs
which possibly raise exceptions�

For the speci
cation of feature�oriented programs	 we show that several results for
object�oriented programs can be simpli
ed in our more general setting� These and
other new results are the following�

� We outline a methodology for modular speci
cation of complex components by
feature and interactions speci
cations� These include calls to virtual functions
with late binding and exceptions�

� Re
nement concepts are adapted to our setting in order to reason about the be�
havior of components which comprise several features� It is discussed how di�er�
ent speci
cation styles a�ect re
nement� Furthermore	 we show how abstraction
functions needed for re
nements can be generated from our type system�

� We show that a certain class of conservative interaction handlers preserves feature
speci
cations� This generalizes results on object�oriented systems for semantic
subtyping to our setting�
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� The results for semantic subtyping can be extended to the context of object net�
works� For this setting with object references	 we can treat homogenous struc�
tures by a new model for object networks with a two�dimensional structure of
the global store�

For feature�oriented programming languages	 we show the essential steps needed to
extend an object�oriented languages by our concepts of features� These lead to sev�
eral interesting insights about feature� and object�oriented programming� Our main
contributions are�

� Extension of a concrete programming language �Java	 Pizza� by features with
advanced type concepts and exception handling�

� For parametric features	 we give two alternative translations to object�oriented
concepts	 which reveal di�erences between aggregation and inheritance in object�
oriented languages�

� We propose translations for generic features and features with exceptions to com�
mon object�oriented language concepts�

We discuss the basic ingredient of our feature composition approach	 the focus on
two�feature interactions� This assumption enables our �exible programming and spec�
i
cation concepts� we claim that these outweigh the e�orts needed to circumvent the
rare case of true multi�feature interactions� This is supported by many examples and
analysis of interactions�
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Chapter �

Feature�Oriented Speci�cation

In this chapter we consider the speci
cation of feature�oriented software components	
which we view as stateful objects with some services� We focus on two main goals� prac�
tical speci
cation techniques for feature�oriented systems which include the essential
ingredients of current object�oriented languages� Furthermore	 we discuss the problem
of composing feature and interaction speci
cations in order to obtain the speci
cation
of a larger object from its individual features� This generalizes the known problem of
behavioral subclassing to our more general setting of feature composition� In this way	
we treat several problems which occur similarly for the speci
cation of object�oriented
programs� As we focus on the speci
cation of just one isolated object here	 we do not
cover object references	 which are treated in Chapter �� Hence we do not use any kind
of object identi
ers	 which are introduced in Section ����
A feature implementation provides a particular service and is similar to a subclass

which adds functionality and state to an object� A feature speci
cation describes the
behavior of the functions �or methods� of the feature� The interaction description
details how the functions of two features must behave in the presence of both features�
In our modular speci
cation approach	 we specify each feature separately and then

focus on the interaction speci
cation for two features at a time� For feature speci
ca�
tion	 we discuss several speci
cation styles	 which di�er in the way they refer to the
state� As we specify features via equations on state�transforming operations	 it is easy
to give veri
cation techniques in order to reason abstractly about the behavior of a
composed	 complex object�
From the outside	 an object simply consists of a set of features� It is desirable to

keep speci
cations abstract	 without any details on the order of the feature composition�
We will however see that some advanced speci
cations are di�cult to express without
information about the feature composition�
We assume that features are added in an ordered	 linear fashion� As in object�

oriented programming	 adding a feature allows to rede
ne functions of the underlying	
inner features� The ordering of features induces priorities between features	 which is
used for interaction resolution on the programming level� The rede
nition is needed	
since functions of a feature must ful
ll the additional properties of the interaction
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speci
cation in case interacting features are added� Furthermore	 the individual speci�

cations should be preserved under such rede
nitions� This is however not the case in
general� Often properties only hold under some abstraction or condition on the usage
of the composed object� In this case	 we speak of a re
nement of the speci
cation of
the features�
We examine in what cases feature speci
cations are preserved under feature com�

position� This problem is particularly important for subtyping	 since adding features
to an object type creates a subtype object� As in object�oriented languages	 this can
be used instead of an object of the required type� Therefore	 we want to know when
this is semantically sound� In other words	 a program supplied with a subtype object
should behave as an object of the speci
ed type� We show that a particular class of
method rede
nitions allows to establish such a generic result� In this more general
form	 we address the typical problems of state�based speci
cations with behavioral
inheritance �Ame��	 LW��	 DL��	 LW����
As we introduce a language with inheritance	 virtual functions and binary meth�

ods �BCC���� in a functional setting	 this also yields a functional model of an object�
oriented language� Furthermore	 our speci
cation techniques provide for a smooth
transition from functional modeling towards state�oriented speci
cations and imple�
mentations�
Another novel contribution are speci
cations for features which a�ect others in a

schematic way� Consider for instance an undo function	 which is informally speci
ed
as �revoking the e�ect of the last operation from any other feature�� Another example
is the lock feature	 which is intended to disable the services of the other features� Our
techniques will allow to specify such generic features formally in a concise way�
Our speci
cation formalism uses monads as the underlying computational structure�

Monads are a quite abstract model which will turn out to be useful in many cases�
Generic features are just one example� In general	 monads are convenient to model
many e�ects of programming languages	 as discussed in �LHJ���� Since we use implicit
state with monads	 we do not need any notion of �extendible� records �CM���	 as in
many other models of object�oriented languages�
For the following speci
cation techniques	 we limit ourselves to sequentially used

objects� Furthermore	 we use a higher�order logic with total functions� This is su�cient
for our purposes	 since we only want to describe the behavior of components� For a
component	 we expect that each service function terminates in 
nite time� Since we
focus on the interaction on services	 we are only dealing with the speci
cation of 
nite
operation sequences� Furthermore	 we are not concerned with non�determinism	 as for
instance modeled in �KPR����

��� Basic De
nitions and Conventions

Our notation for functional programs and speci
cations is similar to common functional
programming languages like Haskell �PHA���� and SML �MTH���� For more detailed
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treatment of higher�order logic we refer to �Gor��� and for ��calculus to �Bar����
We use in the sequel the following basic language constructs and naming conven�

tions�

� Int� Bool� String� ��� are basic data types� Note that �� is the empty type� For
equality on data types we use ���

� a� b and sometimes � etc are type variables	 possibly type constructors�

� � � � � � � � � � and � � are the usual type constructors� If a� b are types	 then
a� b is the type of functions from a to b� Arbitrary n�tuple types are constructed
with �a�� � � � � an�	 where ai are types� �a� is the type of lists over a�

� m is a variable over type constructors� In particular	m is a monad by convention	
as detailed later�

� We write t �� a if the term t has type a� Note that terms are written in typewriter
font	 while types are usually kept in italics�

� True� False� ��� ������� are elements of data types �here booleans and lists��

� push� pop� size and other lowercase variables denote functions of some feature�

� op� op� are variables standing for operation sequences�

� f x or f �x� is a function application where f�� a� b and x�� a�

� �x�t is a functional abstraction of type a� b	 where x�� a and t�� b�

For readability	 we generally use italic fonts for types and typewriter font for other
program constructs�
We often use tuple notation e�g� ��� �	 which should not be confused with parenthe�

ses used for function applications	 e�g� f �g a b�� As in functional languages �PHA���	
MTH���	 we use pattern matching if some data type is de
ned via a set of constructors�
For instance	 we write length �� � 	� This includes nameless functions presented as
��abstractions� For example	 a function which takes a pair as parameter is written
��x�y��t�

��� Features� Interfaces and Programs

In the following	 we will introduce our computational model� Up to Section ���	 we
adopt a very simple and abstract view of features and components� An object consists
of a set of features� This includes the syntactic interfaces of the features	 as well as
their speci
cations� Clearly	 the latter is more problematic and will be the main issue
of this chapter�
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We distinguish between the syntactic interfaces of features and concrete feature
constructors� The latter stand for one implementation of a feature and may declare
local state in form of instance variables� For both	 we may add speci
cations� Since
there is no state de
ned at the interface level	 only abstract speci
cations of the stateful
behavior are possible� We require that speci
cations or implementations for feature
constructors must imply the speci
cations of the corresponding interface�
We assume in the following a set of feature constructors F and a set of feature

interfaces I	 where each Fi � F is associated with one Ii � I� In this case	 Fi
implements the functions declared in Ii	 which is written as Fi �� Ii� Each object
implements a set of feature interfaces� For a feature F in this set we say that the
object has feature F � Compare this to object�oriented languages	 where an object is
associated with a class	 but is also a member of all superclasses� Whereas subtyping
is conventionally based on a class hierarchy	 we simply use set inclusion on features
instead� In this section	 we introduce the basic setting and give speci
cations which
are independent of how features are composed�
In our approach	 programs are operation sequences on an implicit object state�

First	 we need to explain program notation and monadic types� Consider for instance
the boolean function is�element of a feature �class� Container	 which characterizes
the elements of a integer container� As a monadic function �de
ned below�	 it has the
type

Interface Container

is�element �� Int � m Bool�

���

wherem is a monad� A monadm is a type constructor for which certain laws must hold	
as shown later� A monadic function is a function of type b� � � � � bn � m a	 where a is
the result type and bi do not contain the used monad m� The monad m encapsulates a
computation	 which is in this case a state transformation� We leave this computation
abstract for speci
cations� More precisely	 a monadic function returns a computa�
tion� In contrast	 programming language constructs	 e�g� if � then � else �	 have
monadic computations as arguments�
We show that keeping the monad abstract is particularly useful for supporting

the concepts of inheritance�feature combination and exceptions� To get some sim�
pli
ed intuition for the state modeling	 we may imagine a particular object state
of type state via a de
nition for m as follows� m a � state � �state� a�� Hence
is�element �� Int � state � �state� Bool�� The used state depends on all the fea�
tures used� to speak in object�oriented style	 it depends on the actual subclass at run
time� For other language features such as exceptions	 di�erent monads are needed�
Since the internal type should be hidden to the outside	 we only use the internal state
if needed� Note that we use polymorphic types to �quantify over state�	 as state is
modeled via polymorphic state transformers�
A key idea of monads is to distinguish between computations and actually running

computations	 which is shown later� This is convenient for manipulation of programs�
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Since monadic functions modify implicit state	 they are also called operations� As
evident from the type	 we cannot directly compose two monadic functions� Hence we
will show an operator for sequential composition� The monad is used to model the type
and the state of the object	 which will be exploited in later chapters� In Chapter �	 we
will use m to model a set of objects and also exception handling�
If the function is�element is used in a program or a speci
cation	 we assume

�via some type system� that the object provides �at least� for the Container feature
�interface�� In most other imperative approaches for object�oriented programming	
is�element would have a type Container � Int� Bool	 where Container is the type
of an object� �This parameter is often left implicit in object�oriented languages�� To
be precise	 the type Container refers to any subtype of Container in most formalisms
with subtyping�
One application of this abstract	 monadic model of state is subtype polymorphism

of object�oriented languages� Depending on the actual subclass at run time	 di�erent
state is actually used �as well as di�erent function de
nitions via subtype polymorphism
and overloading�� In our setting	 the actual function will depend on the monad used
at run time� Furthermore	 we sometimes mix purely functional computations with
monad computations� This shows the integration of imperative and functional style
via monads� From the type it is easy to see whether a function is a monadic state
transformer or not�
To de
ne a feature	 we have to declare the syntactic interfaces �also called signature�

of a feature� This is visible outside and may be annotated with speci
cations �which
do not use the implicit state�� Using monadic types	 we 
x the functions and types as
follows�

Interface Stack

push �� Int � m ��
pop �� m��
top �� m Int

empty �� m��
is�empty �� m Bool

Interfaces are like Java interfaces or Haskell type classes �NP���� In most object�
oriented languages	 a subclass inherits the interfaces and de
nitions of its superclasses�
In addition	 an element of a subclass is automatically an element of its superclasses� As
we aim for a more �exible model	 we use a separate interface of each feature �subclass�
and allow an object to provide for several interfaces� This su�ces to give an abstract
view of subclassing	 where the subclass relation is just set inclusion on interface sets�
�See also �NP����� Hence we say an object has feature X	 if it provides for the interface
of X� As in Haskell �but unlike Java�	 we assume that a function name is declared in
only one interface�
Concrete feature constructors for an interface are de
ned as follows�

Feature SF implements Stack
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state list �� �Int�

This de
nes a constructor CF for a concrete implementation of the stack feature with
state of type �Int� �lists over integer�� By convention	 we will access the local state
with monadic functions getlist �� m��Int�� and putlist �� �Int� � m��� Later	 we will
use generic functions for state access which solely depend on the constructor name� In
this way variable names	 here list	 are syntactic sugar and hence may be omitted�
For monadic computations	 we use the syntax for monad computations of func�

tional programming languages �PHA����	 which resembles imperative programs� An
operation sequence on a stack may look as follows�

push �� push �� push �� x � top� push x� pop

Note that � � � �� m a� �a� m b� is a monad operator which concatenates monad
computations	 i�e� state transforming operations in our case� The last operation	 here
pop	 determines the result of the sequence� The result of an operation can be bound
to a local variable �via ��	 as in a let construct� More precisely	 the notation

x � top� push x

is an abbreviation for

top� �x�push x

The arrow � is omitted in case an operation returns the empty �void� type ���
To work with implicit state	 there are the following common monadic operations�

The function unit is the empty or null operation� in case of state monads it is the
identity on the state�

unit �� m ��
result �� m a

The function result in addition to unit returns a result� Note that

unit � result ��

The functions unit and result must obey the following monad laws	 which are easy to
verify for state monads� The 
rst two are called right unit and left unit	 respectively	
and the third expresses associativity�

result x� �y�f � ��y�f� x

f� �y�result y � f

f� �y��g y � h� � �f� �y�g y�� h�

For more details on monads see e�g� �Wad�	 Mog���� Monads have been advocated as
a clean and simple way of using imperative concepts in functional languages� Here we
show that they are also useful for speci
cations�
The above monad functions are useful for speci
cation	 as e�g� shown by the fol�

lowing examples regarding stacks�
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push x� pop � unit

top � x � top � result x

These equations state that the operations on both sides compute the same value and
have the same e�ect on the state�
For concise speci
cations	 we introduce a few abbreviations� If op� op�� op� are

operations	 we use context equations of the form

op �� op� � op�

which stand for

op� op� � op� op�

Thus op is the context for an equality� As an example consider

push x �� top � result x

Context equations can be viewed as a special case of conditional equations	 as they put
conditions on the state� We often use a particular form of conditional equations which
we write in the following	 similar notation� We write

op �� b �� op� � op�

where b is some value to stand for

x � op� if x��b then op� � x � op� if x��b then op�

where x is a fresh variable� Recall that the function �� �� a � a � Bool denotes
equality on data objects� Note that the above if � then construct is not a monadic
function	 as it returns a computation� As an example for a conditional equation con�
sider the following�

is�empty �� True �� pop � unit

For monadic operation sequences	 we can de
ne a sequential if�construct based on the
functional one as follows�

ifseq � then � else � �� m�Bool� � m�a� � m�a�� m�a�
ifseq op then op� else op� � b � op� if b then op� else op�

For the last equation it is assumed that b is a fresh variable	 as we may otherwise
capture another bound occurrence of b�
In case of conditions which do not read or write the state	 we also write

b �� op � op�

instead of if b then op � if b then op��
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��� Feature Speci
cations

We show in this section how the individual behavior of a feature can be speci
ed�
Although many features are intended to cooperate with others	 it is important � for
reuse and structuring � to specify their �isolated� behavior 
rst� The speci
cations
for combinations will be presented later� Another goal of this section is to demonstrate
that di�erent speci
cation styles can be used within our setting� Recall that we assume
that the laws presented below hold for all constructors	 if no state is referred to� Note
that some feature speci
cations have to be re
ned �i�e� may only hold under some
abstraction�	 for feature composition� In the remainder of this section	 we ignore this
issue	 which will be discussed later�

����� Behavioral Speci�cations

It is often possible to specify the behavior of operations just by looking at a sequence
of operations� We use equality on operations to show their e�ects� These can be used
to simplify �or evaluate� the program� Since no state is mentioned	 we can work on
the interface level	 as in this speci
cation of stacks�

push x� pop � unit

push x� top � push x� result x

push x� empty � empty

This speci
cation is su�cient for the basic stack operations� It does not mention
any state at all and is hence implementation independent� This style resembles usual
algebraic speci
cations �Wir��	 EM���	 but there are some more subtle issues due to
state� Consider the following	 slightly di�erent version�

push x� pop� top � y � top� push x� pop� result y

push x� top � push x� result x

push x� empty � empty

Although this speci
cation seems equivalent to the former	 the latter makes fewer
assumptions on the manipulated state� The latter does not prescribe	 as the former
speci
cation in the 
rst law	 that the e�ects on the state of push and pop cancel each
other� This may not hold for some implementations and	 more importantly	 if other
features are added� We will compare these two alternative speci
cations at several
occasions�

����� State�Oriented Speci�cations

Whereas behavioral speci
cations relate operation sequences of a feature	 state�oriented
speci
cations specify the state change of a speci
cation �and the result� using the
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underlaying state� Typically	 one speci
es each operation by comparing the change of
the state before and after the operation�
To discuss this style and for comparison to other formalisms	 consider a simple

speci
cation of push via pre� and postconditions on the state with Hoare triples �Hoa��	
Apt����

fs �� listg push x fx�s �� listg�

where � � � is a function of type a � list a � list a and x�s appends x to s and
list is the local stateful variable which is modi
ed�
The problem with such speci
cations is which variables are not a�ected by some

statement� This common problem in speci
cations is often called the frame prob�
lem �originating from arti
cial intelligence research �MH���� and discussed for speci�
fying object�oriented programs in Hoare style in �BMR���� In a subclass �or feature
combination�	 it can be the case that more variables are a�ected by a method� For in�
stance	 consider adding the counter where push and pop maintain the counter variable�
Hence this speci
cation style is of limited use when inheritance is used� As stressed
in �BMR���	 the frame problem is often quite delicate for object�oriented languages	
for methods can be rede
ned in subclasses� It is argued in �BMR��� that simple equal�
ity conditions on variables are not suitable in the presence of inheritance� The article
presents a solution for stating in pre� and post�conditions which variables are a�ected
and which are not	 which is however quite involved in their formalism�
For specifying stacks for the feature constructor SF	 we use the function getlist ��

m��Int��� Hence the following laws are limited to this constructor� Since the direct
formalization of the state�e�ect of a monadic function with equations is quite tedious	
the above abbreviations are used� The idea is to �evaluate� a getlist call after a push
invocation as follows�

s � getlist � push x �� getlist � result x��s

This equation states that the implicit state of the SF constructor is a�ected as desired	
but not more� In this style	 we can specify this feature implementation as follows�

Feature SF implements Stack

s � getlist� push x �� getlist � result x��s

x��s � getlist� pop �� getlist � result �rest s�

x��s � getlist �� top � result x

empty �� getlist � result ��

The above speci
cation uses the function rest�� list a � list a	 which removes the

rst element of a list� Observe that context equations are also useful for operations
which produce only output�
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Functional Speci�cations of State Change

State�oriented speci
cations as above often need auxiliary functions to describe the
state change� This technique is useful in cases where behavioral speci
cations are
not suitable� For instance	 if the behavior depends on a larger history of operations	
behavioral speci
cations can be quite involved and di�cult to understand� Also	 if the
state changes are algorithmically more complex	 the state oriented techniques have to
be enhanced� Since we integrate object�oriented programs into a functional setting	
it is easy to use the techniques of functional languages to describe the change of the
underlying state� Thus we use auxiliary functions	 which by construction do not a�ect
the state	 to describe the resulting state�
A common example is that of a bank account�

Interface Account

deposit �� Int � m ��
withdraw �� Int � m ��
get�balance �� m�Int�

Feature QF implements Queue state balance

s � get�balance � deposit x �� get�balance � result s
x

���

In this case	 the state oriented view is more natural since the notion of a balance is
generally understood� In contrast	 a speci
cation of an account by algebraic laws like

deposit x� withdraw y � deposit x�y

�possibly assuming x � y� is less intuitive� Furthermore	 there are good reasons against
this speci
cation� The left hand side includes two transactions	 whereas the right hand
side has just one� In case we extend the functionality for the account	 e�g� to transaction
reporting	 the latter speci
cation is inappropriate�
As another example consider the speci
cation of a queue� The behavior of de�

queuing may depend on all previous queue operations� Modeling this via reordering
operations is a bit more delicate and may obscure the intuition� The following �incom�
plete� speci
cation of a queue speci
es enque in by comparing the state before and
after the operation using the auxiliary function append�

Interface Queue

enque �� Int � m ��
deque �� m�Int�
qempty �� m��
is�empty�q �� m�Bool�

Feature QF implements Queue

state qlist �� �Int�
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s � get�qlist � enque x �� get�qlist � result append�s�x�

���

Note that we use a function append of type Int � �Int� � �Int�	 which does not
a�ect the state	 as evident from the type� Hence the speci
cation uses functional
programming techniques which do not use implicit state�

��� Feature Interaction Speci
cations

In addition to the feature speci
cations	 we must specify their interactions� We show
in the following that in many cases the speci
cation for a feature combination can be
done at the interface level� This has the advantage that they are not state dependent
and can be used for any corresponding constructor� Interaction speci
cations which
require more details about speci
c constructors and combinations are shown later in
Section ����
For the combination of two features	 we have to specify the behavior of �mixed�

operation sequences� In order to reduce complexity	 we consider two features at a time�
On the programming level	 this is a basic assumption �see Chapters � and ��� In our
speci
cation this need not be the case here	 as it is possible to speak about several
features in one speci
cation�
In addition to the interaction speci
cation	 we have to assure that the speci
cations

for the individual features hold� This is however a more subtle task	 as these may
only hold under extra conditions� This issue will be examined later in Section ��� on
re
nements� How we actually construct such a feature combination will be examined
in the next section�
We show in the following a few typical examples where the interaction can be

speci
ed on the interface level only� From the used operations it is evident which
features are concerned� Hence we do not introduce any extra syntax for interface level
interactions and just state the laws�
In the examples below	 only combinations with the stack feature are presented	 as

the queue interactions are speci
ed in the same fashion� For more advanced interaction
speci
cations	 which rely on particular feature combinations	 this is more involved and
is discussed in Sections ��� and ����� In the examples below	 only combinations with
the stack feature are presented	 as the queue interactions are speci
ed in the same
fashion�
To show feature interactions in the following	 we brie�y discuss two basic features�

Counter

For the counter	 several styles are appropriate� We chose the more abstract interface
speci
cation�

Interface Counter�
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size �� m Int

inc �� m ��
dec �� m ��
reset �� m ��

inc� dec � unit

reset� size � reset� result 	

inc� size � x � size� inc� result x
�

Feature CF implements Counter state c �� Int

This declares the constructor CF	 which will be used later� Note that the last equation
reshu es operations in order to specify their behavior�

Bound

The bound feature is intended to bound the size of elements of a data structure� Hence
its individual speci
cation is rather dull� It can be speci
ed as follows�

Interface Bound

set�bound �� Int � m��
check�bound �� m�Bool�
set�bound x� check�bound y � set�bound x� result �y  x�

Feature BF implements Bound state b �� Int

����� Stack with Counter

For the combination of counter and stack	 we want that the counter indicates the
number of the current stack elements� Hence we only have to �modify� the counter
laws to specify this combination�

empty� size � empty� result 	

push a� size � x � size� push a� result x
�

pop a� size � x � size� pop a� result x��

By the used operations we can infer that the above laws refer to two features� Note
that the above speci
es previously unspeci
ed behavior� The laws must hold for any
combination which includes both features� In addition	 we have to assure that the
original behavior still holds� As we will see in the next section	 speci
cations must be
re
ned in some cases�
An issue not considered here is hiding� As it is not sensible to use the inc and dec

functions of the counter feature	 they should be hidden to the outside� �In case they
are used	 the speci
cation produces unintended behavior� This may indicate that the
speci
cation is too loose��
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Note that there are choices for the interaction speci
cation between two features�
For instance	 an alternative usage for the counter is to count the number of used
operations� This alternative will be explored later� For clarity	 we allow only one
interaction speci
cation for two features on the interface level� Thus	 for a di�erent
usage of the counter	 the counter has to be copied��

����� Bounded Stack

The interesting part of the bound feature is linking it to another one	 here the stack
feature�

check�bound a �� True �� push a � unit

��� Feature Combination via Type Composition

So far	 we have speci
ed abstract behavior of an object which has a set of features�
However	 more details about the combination method are needed later for more ad�
vanced speci
cations and for re
nement concepts� Therefore	 we introduce our model
of a layered feature combination via feature constructors in the following� In the layer
model	 features are added in a particular order using the feature constructors� These
also serve as type constructors which build a new object type from another one�
Formally	 we have the following constructions�

� A set of feature constructors F 	 and	 correspondingly	 a set of feature interfaces
I	 where each Fi � F is associated with one Ii � I�

� A set of object types Otypes	 which is generated by feature constructors as
follows� Fn�Fn���� � � F�� � � �� � Otypes	 where Fi � F 	 i � �	 and all Fi are
distinct� A type Fn�Fn���� � � F�� � � �� implements all corresponding interfaces Ii	
i�e� Fn�Fn���� � � F�� � � �� �� Ii for all i � �� � � � � n�

� A particular set of types T for instance variables of objects	 which is generated
by base types �Int� Bool� � � ��	 and the usual tuple constructors � � � � � � � and
projections �i�

� A mapping T ype �� F � T which describes the state used by a feature� As
the type of the state used by objects is represented as the tuple of the individual
feature states	 this mapping extends to object types in the canonical way� T ype ��
Otypes� T with

T ype�Fn�Fn���� � � F�� � � ��� � �T ype�Fn�� � � � � T ype�F����

�To ease such rede�nitions� it may be convenient to import the signatures and to rename the
functions� The latter is needed since we do not allow names to be used in several features�
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By convention	 we will use �	 � etc as variables standing for object types� Note that
the above de
nitions do not permit functions as variables stored by features� �We use
sum types as in functional languages occasionally	 which can be encoded via tuples��
As an example for the above de
nitions consider for instance the stack feature	 for

which there is a feature constructor SF� By construction	 applying SF to any type adds
the stack feature	 i�e� the constructed type provides for the Stack feature� For instance	
we construct a type for two features via CF�SF�Id��	 where CF adds the counter feature
and Id is the empty object type with no features� �Note that we will often omit Id for
convenience��
In object�oriented programming	 functions �methods� can be rede
ned for each

di�erent subclass� This corresponds to rede
nitions in case of feature combinations
here� In our model	 push for SF�Id� is di�erent from push for CF�SF�Id��� To
distinguish these	 we annotate functions by the type of the object they work on as
subscripts� For instance	 pushSF �Id� �� pushCF �SF �Id��� Note that this overloading
depends on the type of a function� More precisely	 it depends on the monad m� As
we use implicit types	 it is convenient and equally expressive to annotate the functions
and not the types� The latter is used in the functional implementation in Chapter �
and also below for illustrations�
Notice that only functions of the same object type can be composed to an operation

sequence� Hence all operations in a sequence must have the same type subscript�
For this reason	 we also mark operations sequences with type subscripts� Integrating
methods with di�erent subscripts will be shown below�
As mentioned earlier	 some speci
cations are stable under composition �similar

to inheritance�	 some must be restricted� More precisely	 their application has to be
restricted� It is useful and often su�cient to use more precise object types for equations�
We can simply restrict the operations in equations to particular feature combinations
by adding types� The following are typical examples which illustrate the scope of
equations�

� push� � pop� � unit� holds for any combination where the stack feature is
present� �Recall that by the type system	 we automatically assume that � must
include the stack feature�� This is the default in the sequel if no annotations are
used�

� pushSF ��� � popSF ��� � unitSF ��� holds for the stack feature �without rede
ni�
tions�	 added to some feature combination ��

� pushCF �SF ���� � popCF �SF ���� � unitCF �SF ���� holds for stack plus counter com�
bination only�

We will later on use equations where the equality is restricted to the state of certain
features� This allows one to abstract from �or ignore� any changes to the state of
all other features� Here we only quantify over the feature combinations of the used
operations� Note that annotations are only needed for constraining speci
cations to
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�yet unknown� feature combinations� They are not needed for programming	 where
type inference usually does this job�

��	�� State and Feature Combinations

We explain in the following how the layer model supports the implicit state� Informally
speaking	 each feature constructor adds some piece to the full object state of a feature
combination� More precisely	 this is done via monad transformers	 which transform
monads into new ones	 in Chapter �� For speci
cations in our context	 we use a
simpler model tailored for state transformers�
Recall that the actually used monad depends on the used features� To be more

precise	 we can annotate the monad by the used object type	 since the used monad
depends on the used features� For instance	 mSF �� mCF �SF �� Recall that we use the
type annotation on functions	 as explicit types �with monads� are often omitted�
The following table shows the appropriate types for some feature combinations�

Features Constructor Used Monad
Stack SF mSF � Int� �Int�� ��Int�� ���
Stack ! Counter CF�SF� mCF �SF � � Int� Int� �Int�� ��Int� �Int��� ��

In general	 a function of a composed object transforms the state of all features� For
modular speci
cations	 it is often needed to embed a computation on a smaller state
�with fewer features� into a computation on a larger state� The idea is to perform
the identity operation on the extra state� We use the generic function lift�� m� �
mF ��� to lift functions to the extended state� This embedding of computations via
lift is essentially what happens in object�oriented languages with a call to �super�	
which �formally� constructs a function of the sub�class from a superclass function� For
monad compositions via monad transformers	 this is known as lifting	 as discussed in
Chapter ��
The function lift must ful
ll the following properties�

lift �result� x� � resultF ��� x

lift � f � g� � lift f � lift g

The above laws state that lifting result yields the function result for a di�erent
type and that composed functions can be lifted individually� The construction of the
function lift is straightforward �for our case here� and shown in Chapter ��
Recall that T ype�F � is the type of the state declared for feature constructor F 	 and

similarly for feature combinations� We have for instance

liftF ��� f� �� T ype�F �� T ype���� ��T ype�F �� T ype����� ��

for lifting a function f of type T ype��� � ��T ype���� ��� A more general version in
terms of monad transformers can be found in Chapter ��
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As an example	 we can de
ne push for the Stack plus Counter combination as an
interaction resolution� The de
nition of pushCF �SF � is shown in the 
rst line of the
table below� The two rows show the state used by the two features and illustrate
how the state is a�ected by the operations� Observe the use of lift to embed the
computation on SF into CF �SF ��

Operations� pushCF �SF � a � incCF �SF �� lift pushSF a

T ype�SF � �Int� �Int� �Int�

T ype�CF � Int Int Int

We often use a generalized form of the above with the type pushCF �SF ���� instead� This
is clearly more generic	 as it can be added to any other feature combination ��
To execute a monadic computation	 we assume a function run	 which invokes an

operation with a given initial value for the state and returns a pair of the computed
value and the updated object store� Assuming m�a� � � � ��� a�	 we can give the
type of run as follows�

run �� m�a� � � � ��� a�
run op�seq �o�����on� � op�seq o� ��� on

The last de
nition of run is based on the state transformer view and has to be adapted if
other language e�ects are modeled� It assumes that the state of an object is represented
by a tuple �o�����on�� An invocation run op�seq os thus gives a pair of the form
�os�� val�	 where os� is the new state and val is the computed result value�
If operations are state transformers	 we can apply the principle of extensionality	

stating that op�seq and op�seq� are equal if

� x � T ype����run �op�seq� x� �� run �op�seq�� x�

In our setting	 types ful
ll two purposes simultaneously� they determine the type of
an object �i�e� the features it provides� and also model the state of an object directly�
This close link will allow for generic access to the state of an object which is convenient
for speci
cations� Furthermore	 we can de
ne abstraction functions on state using
object types� As we represent an object type by a term of feature constructors	 we can
construct precise abstraction functions based on the syntactic structure of an object
type� In contrast	 usual type systems for object�oriented languages just use a particular
class and not the set of superclasses as the type� This is the main di�erence to other
type systems �AC��	 PT��	 Cas���	 which focus on many subtle aspects of polymorphic
subtyping� Although some of them are designed for imperative programs	 they are not
directly useful for our purpose� As we use type variables in such compositions	 it is
possible to reason about feature combinations� As an example consider the type term
CF ���	 where � stands for some feature composition�
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��	�� Generic State Access and Liftings

An essential ingredient for speci
cations of stateful features is generic access to state�
In our setting	 we can assume generic state access functions getF and putF 	 which
are parameterized by a feature constructor F� For instance	 getlist as used in the last
sections is just a gentle version of the function getSF �

� getF �� m�T ype�F �� reads state of feature constructor F �

� putF �� T ype�F �� m�� writes state of feature constructor F �

It is useful to generalize the above functions for feature combinations�

� get� �� m�T ype���� reads state of any feature combination ��

� put� �� T ype���� m�� writes state of any feature combination ��

These functions are essential for the speci
cation and implementation of generic fea�
tures	 as shown later� A programming level version of get� can be found in Chapter ��
With feature combination �or inheritance� methods are rede
ned for feature combi�

nations �or subclasses�� Hence operations of one feature may work on di�erent parts of
the state	 depending on the feature combination� On the other hand	 it is important to
reason abstractly about the state which is possibly a�ected by a function call� For this
purpose	 our �frame axiom� is essential for speci
cation and veri
cation� each func�
tion�operation of a feature can be presented as a read operation plus some computation
followed by a write operation on just the feature state� Formally	 for all operations f
of a feature F there exists a f� such that

f � x � getF� putF y� result r where �y�r� � f� x

Assuming f�� � � m�	�	 then f��� � � �	� T ype�F ��� This assures by construction
that f� is side e�ect free� Any e�ect on the state must be returned via the variable y
whose value is assigned to the state� Note that the frame axiom is more involved when
several features are used� This law can be formally derived using the polymorphism
in our feature de
nitions and speci
cations by the results developed in �Wad���� Since
this requires considerable technical overhead	 it is not treated here�
In other formalisms	 the frame axiom is stated on the meta level or by explicit

statements� For instance	 in the Larch language �CL��b	 DL���	 a �modi
es� clause is
used to restrict the e�ect of methods�

��� Speci
cation of Generic Features

Some of the features mentioned in the introduction are very generic in the way that
they refer to the full behavior of an object� For instance	 the lock feature is intended to
disable all other features� This informal speci
cation refers to all other present features�
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�More precisely	 this refers to all �inner� features onto which lock is added�� We show
in the following how to write such generic speci
cations in our framework� With the
techniques considered so far	 we have speci
ed the behavior for two �or more� concrete
features at a time� Although this is in general su�cient	 it is tedious for features whose
interaction can be described in a schematic way�
Generic features are features which can be speci
ed in a schematic way referring to

the state of other features	 which are however kept abstract� Hence generic features can
only refer to state	 but not to other particularities of other features� This enables high�
level formalizations� Note that we do not talk about the functions of other features
directly	 which means quanti
cation over the syntactic entities� This clearly has the
drawback that we would need some re�ection principle in the logic to talk about its
syntactic entities	 which we want to avoid here�

��
�� A Generic Undo Feature

For the undo feature to work	 we assume that every other feature must set undo
markers	 
xing the states to which we may backtrack via undo� Hence this feature
provides for two functions which are speci
ed in detail in the interaction speci
cation
below�
To specify which operations are undone upon one invocation of undo	 we need to use

the function set�mark� This function is typically used for the interaction speci
cation
of a feature with the undo feature�

Interface Undo

undo �� m��
set�mark �� m��

Feature UF implements Undo

set�markUF ��� � undoUF ��� � unit

lift �put� x� � undoUF ��� � undoUF ���

y � result� x� undoUF ��� � undoUF ���� y � result� x

lift get� � undoUF ��� � undoUF ���� lift get�

The speci
cation of undo requires some explanation� The 
rst law states that
set�mark stops the undo process� As the marker is eliminated as well	 undo can be
applied repeatedly� State changes	 which are solely possible via put are simply undone	
as speci
ed in the next law� The relation of undo and other operations is more delicate	
since we cannot undo a computed result� Thus	 a concrete computed value remains
unchanged by undo	 as speci
ed by the third law� In case the result of a get operation
is not used	 the last law states that the operation can be swapped� �Note that it is
equally possible to remove such a get operation�� Another important detail is that
the state access operations in the above speci
cation are lifted� This is only to assure
that put and get to not refer to the undo feature itself� Note also that we have not
speci
ed the e�ect of undo on an initial state�
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This speci
cation strongly relies on the above frame axiom stating that all opera�
tions can be reduced to the base operations put	 get and result� Furthermore	 get
operations can be evaluated to a concrete result before the undo speci
cation applies�
Consider for instance a more delicate usage of undo in following program for UF �CF ��

set�markUF �CF �� putCF �� y � getCF� undoUF �CF �� resultUF �CF � y

The main point of this example is that the rules for undo cannot be applied directly�
First	 the computation to the left has to be evaluated appropriately� The resulting	
equivalent program can be simpli
ed easily with the above speci
cation�

set�mark� putCF �� y � result �� undo � result y

� set�mark� putCF �� undo� y � result �� result y

� set�mark� undo� y � result �� result y

� y � result �� result �

Observe that the above abstract speci
cation of undo does not depend on any concrete
state� It is essential that put does not compute a result	 which is evident from the type
of put�� a� m��	 as we cannot undo a computed result�
For the interaction speci
cation with undo	 we have to set undo markers with

set�mark� This leads to another design question of undo� Shall we undo functions
which do not a�ect any state� For instance	 consider the following operation sequence�

push x� y � top� undo

We may specify the interaction between stack and undo via these laws�

pushUF ��� � set�markUF ��� � lift push�
popUF ��� � set�markUF ��� � lift pop�
topUF ��� � lift top�
���

This speci
cation sets an undo marker before each operation which changes the state	
but not before the state readers� A speci
cation which adheres more strictly to the
informal one would also set undo markers before state readers�
It is instructive to show how we can verify the e�ect of undo� For the proof	 we

need the frame axiom for each other operation f we want to undo� This law expresses
that the function f can be represented as a state change plus some output� Only this
state change	 which is done via gets	 is undone	 as an output cannot be revoked� To
be more precise	 the inner part of f is undone� Its speci
cation for the undo context
may include a call to set�mark	 which is not undone by this law� �But bounds the
e�ect of undo��
Another question is whether this speci
cation is actually consistent� We must

assume for consistency that set�markUF ��� and lift f� are distinct state transformers�
This is easy to achieve by assuming that set�mark modi
es the local state of the undo
feature�
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��
�� A Generic Lock

With similar techniques as used in the last feature	 we can now tackle the lock feature�
The lock feature is intended to disallow any state change to the inner features� Using
generic state transformers	 this can be speci
ed as follows�

Interface Lock

lock �� m��
unlock �� m��

Feature LF implements Lock

lockLF ���� lift �put� x� � lockLF ���

lockLF ���� lift �get� x� � lift �get� x� � lockLF ���

lockLF ���� result x � result x � lockLF ���

lockLF ���� unlockLF ��� � unit

As with the undo feature	 this highly generic speci
cation can only be explained using
the frame axiom� This states that each operation of a feature can be represented using
basic state transformers and state readers� �This argument still holds for functions
which both write the state and compute a result��
A drawback of this version of the lock operation is that it a�ects all inner features	

with no exception� Alternatively	 we could specify the e�ect for each feature individ�
ually� Note however	 that this may easily lead to inconsistencies if one function of a
feature can be modeled by another one and its behavior wrt lock is di�erent�

��	 Feature Combination and Re
nement

The main objective of modular speci
cations is that speci
cations for individual fea�
tures and interactions hold for feature combinations as well� Unfortunately	 it is not
always the case that the laws hold directly� Since functions can be rede
ned for feature
composition and since the a�ected state varies	 laws may not hold for some implemen�
tations� While interaction speci
cations add extra requirements	 feature combination
may also require re
nements of feature speci
cations� For these reasons	 we often need
to use an abstraction of the state or to put extra conditions on speci
cations�
As an example	 consider a speci
cation for stack with a counter	 i�e� the type

CF �SF �� We have two feature speci
cations plus the interaction speci
cation as fol�
lows�

� The speci
cation of stacks must be shown for CF �SF �� For the rede
nitions
presented earlier	 this is shown in Section ����

� The interaction speci
cation	 given as
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empty� size � empty� result 	

push a� size � x � size� push a� result x
�

pop a� size � x � size� pop a� result x��

can be veri
ed in a similar fashion�

� The speci
cation for the counter holds by construction� However	 it is desirable
to hide inc and dec to the outside� As hiding is an orthogonal issue	 it is not
considered here�

The speci
cation of a composed object is obtained from the individual speci
cations
plus the interaction speci
cations� Assume that some type � has a feature F and
that the laws for F hold� �In general	 they may only be a re
nement of the original
speci
cation of F �� Then	 we add a feature F �	 which gives the type F ����� By
assumption	 the laws for F � do hold	 as speci
cations for feature constructors are
schematic wrt the underlying features �here �� and must hold for any implementation�
As the functions of F are rede
ned for the type F ����	 we have to show that the laws
for F hold �possibly in some re
ned way� for this type� Furthermore	 we have to show
that the interaction speci
cation holds�
We can de
ne re
nements via logical implication� A speci
cation R is a re
nement

of a speci
cation S	 if R implies S� A typical example of re
nement is an implemen�
tation of stacks	 given via equations as shown in Chapter �� For re
nement	 we must
show that these equations imply the stack speci
cation� Such data type re
nements
are well examined problems �Hoa�	 Slo���� For an abstract view of re
nement see
e�g� �BS��
In our case	 laws using implicit state hold under feature combination in many

cases� This advantage of our speci
cation technique is due to careful avoidance of
overspeci
cation� For instance	 the speci
cation for push and pop of the stack feature
holds under adding the counter CF	 although the stack operations have been rede
ned�
Some cases where this is not the case will be examined and classi
ed below�
As we aim for feature composition	 we want to show that a speci
cation which

holds for some feature combination still holds in case another feature is added� Since
the additional feature is in general unrelated	 it is often required to abstract from the
details of other features and establish the speci
cation under an abstraction of the
object state� Since we use equational speci
cations with implicit state	 it is convenient
to restrict the equality instead of applying abstraction functions to the object state�
Furthermore	 our type system can be used to determine the needed abstractions in a
simple way� This is possible if the abstraction function ignores the state of particular
features�
More concretely	 speci
cations consist of equations of the form op�seq � op�seq��

Since this equality depends on the actual type	 we can write the types explicitly as
follows�

op�seq� �� op�seq��
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We use in the following a restricted equality	 which only compares the state changes for
selected features� For instance	 for � � F ���	 we can ignore the state used for feature
F via the equality

op�seqF ��� �� op�seq�F ���

We can illustrate the above equations by making the implicit state explicit via the
function run�

� x �� T ype�����run op�seq� x� �� �run op�seq�� x�

As the two operation sequences are state transformers	 we can just apply appropriate
parameters �initial values of the state� and quantify over them� With explicit state it
is possible to de
ne abstractions which pick only certain features� For instance	 with
an appropriate abstraction function abs of type T ype�F ����� T ype���	 we can write
the above equation with �� in a more explicit form�

� x �� T ype�F �����abs�run op�seqF ��� x� �� abs�run op�seq�F ��� x�

Furthermore	 we can put conditions on the the initial state or on the �outside visible�
parameters of the operations� This leads to the issue of conditional re
nements�
Whereas re
nement usually means reducing underspeci
cation	 conditional re
ne�

ment may also entail restrictions on the usage of some object� As an abstract notion
of conditional re
nement �see e�g� �St"����	 we can write C � �R � S�� We will see
later that it is often di�cult to formalize the conditions� For instance	 how can we
require that a �black�box� procedure does not invoke an internal message more than
ten times� Since we do not know the internals of the procedure	 we cannot talk about
its internal behavior� A solution to this problem will be presented in Section ��� on
exceptions�
In the following sections	 we present some typical classes of re
nements in more

details�

����� Behavioral Re�nement

In the simplest case	 the laws of one feature hold for the particular combination� Con�
sider for instance the stack with counter combination with an implementation where
the stack operations increment or decrement the counter� Then even the law

pushCF �SF ���� x� popCF �SF ���� � unitCF �SF ����

holds	 although the manipulated state is di�erent� As only the equality of the resulting
states is required	 some extensions may con�ict with this speci
cation� The problem
is that this law for stacks requires that a sequence of push and pop is the identity on
the state� Such strong statements about the state only hold under rede
nitions if two
features are independent or behave in a synchronized way	 like the counter� If this is
not the case	 we show another common re
nement in the next section which is more
�exible wrt the used state�
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In general	 behavioral re
nement is a quite strong property� It depends heavily on
the speci
cation style� For instance	 the speci
cation of the stack via

push x� pop� top � y � top� push x� pop� result y

is tailored for behavioral re
nement� As an example consider a feature counting the
number of invoked operations�

Interface OpCounter�

ops �� m Int

inc�op �� m ��
reset� ops � reset� result 	

inc�op� ops � x � ops� inc�op� result x
�

Feature OP implements OpCounter state o �� Int

pushOP ��� x � inc�opOP ��� � lift push� x

popOP ��� x � inc�opOP ��� � lift pop� x

���

For this new feature	 behavioral re
nement holds for the latter speci
cation �if the laws
hold for ���

pushOP ��� x� popOP ���� topOP ��� �

y � topOP ���� pushOP ��� x� popOP ���� result y

Note that there are still feature combinations which do not ful
ll this law �e�g� the
lock�� These will be discussed in the following sections�
In general	 behavioral speci
cations have the advantage that they do not refer

directly to a particular notion of state� Since behavioral speci
cations only relate
operations of one feature	 they do not state anything about extra operations�
Many other speci
cation styles �DL��	 MS��� �Hoare calculi and predicate trans�

formers� refer to the state change in a direct way� Such speci
cations have to be �up�
dated� in case extra features add state which may also be manipulated if an operation
is rede
ned�

����� Weak Behavioral Re�nement

Weak re
nement covers the case when laws only hold with a restricted equality	 which
ignores the state of some additional features� This is a particular case of an abstraction	
which is easy to handle via types �as shown above� and is quite typical in object�oriented
systems� For instance	 assume an implementation for undo which copies the local state
before each operation� Then we have for stack with undo�

pushUF �SF ���� x� popUF �SF ���� �SF ��� unitUF �SF ����
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This means that the equation only holds for the state change of the stack variables
�the integer list�� Another	 very similar example is the same law with OP �SF � instead
of UF �SF ��
In general	 weak re
nement applies when features add extra functionality which

may invalidate old laws on the newly added state� Weak re
nement is important for
object�oriented design	 as it allows for semantic subtyping where behavioral re
nement
does not hold �as discussed in Section ����� The goal is that an object with the new
features can be viewed as a subtype of stack and can be used instead�

����� Conditional Re�nement� A Bounded Stack

Conditional re
nements cover cases where an abstraction on the state does not su�ce�
Instead	 some conditions on the environment must be ful
lled for the laws to hold�
By environment we mean the user of the operations� For instance	 in the case of the
bounded stack	 we must assume that the elements we push into the stack are below
the size in order for the laws to hold� Hence we need extra conditions on the function
parameters�
An alternative case is a small stack	 which is bounded to a 
xed number of ele�

ments� Then we need extra constraints on the initial state for the equations to hold�
Conditional re
nement is often used for the transition of a more abstract model to a
concrete one with limited resources or capabilities �St"����
In general	 conditional re
nements may constrain the following�

� The state before the execution of an operation of some feature� For instance	
for the lock feature	 the other feature speci
cations hold if the initial state is
unlocked and the lock is not used� In general	 this leads to invariants	 as discussed
in Section ������

� The parameters with which the functions of the feature are invoked� For instance	
a bounded stack may only be able to insert elements below a certain size�

� The allowed function calls may be restricted� For instance	 the small stack dis�
cussed above may only be able to hold ten elements� Hence a program must
not add more that ten elements in order to work properly� In the general case	
conditions may disallow certain operation sequences�

Consider for instance the bounded stack	 where the interaction requires to add condi�
tions to the stack rules as follows�

check�bound x �� True �� push x� pop � unit

check�bound x �� True �� push x� top � push x� result x

check�bound x �� True �� push x� empty � empty

We will discuss this in detail in Section ��� and show that it is often easier to model
conditional re
nement via abstraction over exceptions�
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Another typical case are conditions on the state� Consider for instance the example
of a small stack with just ten elements� This is more complicated to formulate� Similar
to the above feature	 we assume a feature SizeBound with an operation check�size

to check the size of the stack� A simple approach which re�ects the form of the above
conditional re
nement rules is the following�

check�size �� True �� push x� pop � unit

check�size �� True �� push x� top � push x� result x

check�size �� True �� push x� empty � empty

These laws model a constraint on the implicit state	 whereas the above is a constraint
on the parameters� The general form of such a re
nement is to read the local feature
state and then to check the condition on the state� This however obscures the relation
to the original speci
cation� We show in Section ��� that exceptions give a simpler and
technically more elegant treatment of conditions�
The general disadvantage of conditional re
nement is that it does not create a

subtype relation in general	 only a conditional subtype	 which has to be veri
ed for each
usage� For instance	 if some program works correctly on stacks	 we cannot conclude
anything about its behavior on a bounded stack� This can be relieved in many cases by
the use of exceptions for speci
cations	 as discussed in Section ���� The idea is to raise
an exception in case the bound check does not hold� In this case	 the above equations
hold if no exception occurs�
Note that there are cases where we need more than one of the above re
nement

principles� For instance	 we may need conditional re
nement with additional state ab�
stractions� Such combinations are quite straightforward as the principles of conditional
and �weak� behavioral re
nements complement each other�

����� Structural Re�nements which Require Abstractions

There are cases where an added feature changes the internal structure of a state�based
implementation	 on which a speci
cation relies upon� This usually requires abstrac�
tion functions to relate two state�based speci
cations� An example is a special�purpose
counter based on two integer variables designed for the stack feature� Via the inter�
action speci
cations	 it counts the number of push and pop operations	 respectively�
The actual size of the stack is obtained by subtracting the two counters� Hence the
operations push and pop do not cancel each other �wrt the counter��
In general	 we need abstraction functions on state�based speci
cations to account

for a new implementation� This is not formalized here	 as such re
nements are well
examined �DL��	 LW��	 MS���� Abstraction functions are a well developed and pow�
erful tool for showing an implementation relation	 typically for some abstract data
types �Hoa�	 GTW��	 Ehr�	 Slo����
We argue however that this expressiveness to model structural change is not de�

sirable for object composition� There are several reasons for this� Often	 state�
independent speci
cations on the interface level can be used instead	 which avoid these
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problems� Secondly	 we claim that for inheritance or feature combination the need for
structural abstractions is not an indication of good design� In most of these examples
in the literature	 ad�hoc rede
nitions are used in order to reuse some object� In addi�
tion	 abstraction functions require some technical overhead	 particularly if re
nements
are used repeatedly� For these reasons	 we restrict our attention to cases where our
simpler techniques su�ce�
Note further that the need for abstraction functions can also be an indication for

an inappropriate speci
cation� Consider the example of a counter CostCount which is
used to count the cost of the used operations� For instance	 operations like push	 pop
or check�bound have cost one� In case we specify that an operation pop increases the
cost by one	 then this does not hold if the bound check is added� The reason is that
we only abstract over feature states and cannot �undo� this extra cost� This could be
remedied by an abstraction function which recalculates appropriately� We consider this
however as a speci
cation problem and not a limitation of our techniques� A solution
is to specify the cost increase in a more �exible way by a cost function which can be
rede
ned in other features as well�

����	 Combination of Re�nements

When building complex objects	 features are added repeatedly� In this case	 it laws of
one feature have to be re
ned repeatedly� Since re
nement is just logical implication
here	 repeated re
nements are obtained via logical conjunction� This applies also for
conditional re
nements	 where conditions have to be conjoined�
For instance	 consider the equation op � op� which holds for some feature F � In

order to add features F � and F �� independent of each other	 we may show the law of
feature F for the following types� for opF ��F � � op�F ��F � and opF ���F � � op�F ���F �� Now
assume we want to add both features at the same time� However	 from the last two
equations	 we cannot conclude anything about opF ���F ��F �� � op�F ���F ��F ���
To avoid this problem	 it is important that re
nement relations are established in

a slightly more general way� The equation must be shown for two more general types	
i�e�

opF ���� � op�F ����

and
opF ����� � op�F ������

Then we can conclude
opF ���F ����� � op�F ���F �����

as well� Since the above two equations hold for any �	 we can obtain the result by
appropriate instantiation of �� �In general	 uni
cation of type terms is needed�� The
same line of reasoning holds for weak behavioral re
nement	 where the equality is
restricted� This abstract way of representing interactions is also important for the
programming level �see Chapters � and Chapters �� as the interaction treatment is
composed in the same way� This is essential for �exible feature combination�
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��� Formal Reasoning about Monadic Programs

In this section	 we discuss formal reasoning about program sequences in our setting�
This includes proving properties �or re
nements� of composed objects and of imple�
mentations� Our speci
cation style builds upon equational reasoning about operation
sequences� For this to be practical	 it is essential that we can reshu e operations which
do not a�ect each other� As we partition objects into features	 this is often simple	 but
can be involved in general�
Consider a simple but typical example� counter plus stack� Assume the push

function of the counter is rede
ned as shown in Section ���	 and pop accordingly� For
this implementation	 we show the law push x� pop � unit for CF �SF � via equational
reasoning and reshu ing of operations� The general proof strategy is to rearrange the
commands such that laws apply� In the 
rst step	 we unfold the de
nitions and then
reorder operations of di�erent features� Next	 we apply the rule for the counter� To
simplify the stack operations	 we 
rst use the law for lift and push the lift operation
outside�

pushCF �SF � x� popCF �SF �

� incCF �SF �� lift pushSF x� decCF �SF � � lift popSF
� incCF �SF �� decCF �SF � � lift pushSF x� lift popSF
� lift pushSF x� lift popSF
� lift �pushSF x� popSF�

� lift unitSF
� unitCF �SF �

The reordering of stack and counter operations in the above proof is possible since
the two operations may only a�ect di�erent parts of the state� The important obser�
vation about this proof is that we do not need to look at state� For reordering	 we only
use abstract results about which state may be a�ected� In this sense	 we hope that
this proof strategy is more abstract and hence scalable to larger and more involved
systems�
The general design is to shift the state readers	 which produce values	 to the left

which allows concrete evaluation� This should of course be re�ected in the speci
cation
rules�styles	 not just in the veri
cation techniques� In general	 there are however some
obstacles to reshu ing �which clearly appear in other approaches as well�� Note that
it is necessary for several rules to insert extra state readers� For instance	 most state�
oriented speci
cation start with an operation reading the state� Since state readers do
not change the state this causes no problems� As a consequence	 it is advisable for
feature speci
cation to separate state readers and modi
ers�
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�� Semantic Subtyping

In the treatment on re
nement	 we have aimed at lifting properties of features to
feature combinations� Semantic subtyping is a related	 but slightly stronger property�
In our setting	 adding new features to a particular combination of features creates a
subtype� The idea of subtyping is that a subtype object can be used instead of an
object of the supertype�� In object�oriented programming	 subclasses usually create
subtypes	 which is a main ingredient of many object�oriented languages� In addition
to the syntactic subtype relation	 it is desirable to establish semantic properties as
well� If we can show that a program has certain properties	 we want the same result
in case it is used with an object of a subtype�� Thus the di�erence to the last section
on re
nement is that we are not only interested in properties of an extended object	
but also of arbitrary programs which use the extended object� In other words	 we not
only establish properties for an extended object	 but any properties shown via these
laws� We will see that in many cases only weaker results are possible	 similar to weak
behavioral re
nement�
Consider for instance an operation sequence on a stack object for which some prop�

erties have been shown using the stack speci
cation� If an object with additional
features is used instead	 weak behavioral re
nement allows one to recover the prop�
erties for a restricted equality� More formally	 assume a procedure f	 of which we
only know a certain property� Internally	 the function consists of some operation se�
quence f � opSF on an object of type SF � Assume we have the following property�
f �SF op�SF � If f is run on a subtype object of type OP �SF �	 we want to infer
opOP �SF � �SF op�OP �SF �� This is all we can expect for this case	 as the internals of the
operation op are not known� In this case	 the above equation for f speci
es its e�ect
on the stack	 but we do not know how many operations were used� Thus	 we cannot
conclude anything about the operation counter OP from the abstract speci
cation�
In the following	 we will establish a meta�result about �lifting� properties of an

operation sequence for the form
op� �� op��

to
opF ��� �� op�F ����

For formal reasoning	 it is important to realize that we do not use a dedicated	 special
logical calculus but instead embed feature�oriented programs into �higher�order� logic�
For this reason	 we cannot give such a generic result without further assumptions	 as
a proof of the former result may use details of the particular setting about which we
cannot reason generically� Thus we will assume that the operation sequences op and
op� only use the declared operations of the features� We must assume that the proof
of the initial property consists of a chain of equalities of the form op �� � � � �� op��

�This is discussed for parameter passing in Section ����
�We do not talk about procedures with objects as parameters here� which is discussed in Section ����
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With this restriction	 it seems at 
rst glance that all we need for lifting the property
of f is �weak� behavioral re
nement for the used laws� There is however a further
problem� In a proof	 as for instance shown in Section ���	 one often has to reorder
operations in order to apply laws� This is in general not possible if a feature is added
which rede
nes operations� As an example consider for instance a stack with counter
and undo	 i�e� UF�CF�SF��� For this object	 the reorderings shown in Section ��� do
not apply as

incUF �CF �SF ��� popUF �CF �SF �� �� popUF �CF �SF ��� incUF �CF �SF ��

The reason is that undo behaves di�erently after these two operation sequences� Note
that this reordering is possible for CF�SF�� Therefore	 we cannot simply establish a
generic result for semantic subtyping from �weak� behavioral re
nement� In this ex�
ample	 we can still establish the result	 since the reordering holds under abstraction to
CF �SF �	 but this does not hold in general�
Thus we follow a similar	 but di�erent line of reasoning as in the existing re�

sults �DL��	 LW���� The idea is to use a simple restriction on method rede
nitions
which is quite reasonable for practical purposes�

De�nition ����� A method rede
nition of a function f� for fF ��� is called conserva�
tive	 if

fF ��� �� lift f��

A conservative rede
nition can add new behavior	 but cannot alter the inner be�
havior� Almost all rede
nitions considered so far are conservative� Clearly	 there are
cases of non�conservative rede
nitions	 where behavioral re
nement holds� If we re�
de
ne the stack operations push and pop to add�remove an element twice �similar to
Section ������	 then the abstract speci
cation of stacks still holds� This means that the
original data structure is used in a di�erent	 but compatible way� Since such rede
ni�
tions neither appear to be frequent nor seem to be advisable	 we limit our attention to
conservative rede
nitions� There is however one reasonable exception to conservative
rede
nitions� A method rede
nition can use its pendant in the superclass in a black
box fashion as is or not at all� For instance	 in case of the bounded stack	 a pop opera�
tion is not executed in some cases� Such cases can however be handled with exceptions	
as shown later in Section ����

Theorem ����� Assume two operation sequences op and op� and assume further

op� �� op��

holds� If the sequences only use declared operations of the features in � which are
conservatively rede�ned in F ���� then

opF ��� �� op�F ���
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Proof Since by assumption op � op�	 we can conclude from the conservative rede
�
nitions that both operations terminate for the type F ���� We assume

opF ��� � op�F ���� � � � � opnF ���

and
opF ��� � op��F ���� � � � � op�nF ����

With the property of conservative extension	 we can show�

opF ��� ��

op�F ���� � � � � opnF ��� ��

op�F ���� � � � � lift opn� ��

�by induction�
lift op��� � � � � lift opn� ��

�properties of lift	 induction�
lift �op��� � � � � opn�� ��

lift �op���� � � � � op�n�� ��

lift op���� � � � � lift op�n� ��

op�F ���

�

Note that this result also entails weak behavioral re
nement as a special case� For
weak behavioral re
nement	 we only have to apply the theorem to lift the laws of �� It
is straightforward to extend the last de
nition and the above result to combinations of
several features� For instance	 instead of just F 	 we may want to add two features F�

and F�� The technical treatment for this case proceeds similar to the above� We will
give extended versions of these results which address the handling of object networks
in Section ��� A further novel extension to subtyping under exceptions is shown in
Section ������
The above result is similar to the condition for semantic subtyping in �DL��	 LW��	

Ame���	 where it is expressed with an explicit abstraction function in terms of pre�
and postconditions of methods� In this version	 a method rede
nition in a superclass
may not follow the superclass implementation	 it only has to ful
ll the postcondition
assuming the precondition holds� Our requirement is stronger	 as we require the e�ect
on the �part of the� state to be identical� If it is only required that a postcondition
holds	 this may leave choices for an implementation� With this de
nition	 a subtype
may produce a di�erent resulting state	 as long as it ful
lls the postcondition� In
addition	 we do not consider arbitrary abstractions but construct them from the type
system�
The main advantage is that our de
nition is independent of actual speci
cations�

Hence	 as we show below	 the generated subtype relation does not depend on the
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speci
cation� The notion of conservative rede
nitions only depends on the rede
nition�
Other approaches build a relation between speci
cations for some abstraction function�
For this reason	 we claim that our notion of conservative rede
nitions is practical and
easy to use�
Another di�erence is that our setting is more �exible	 as will be evident when

we treat subtyping for object models in Section ��� and exceptions as re
nements
in Section ���� We may also argue that the technical treatment is simpler	 as the
development in �DL��� is quite technical�

���� Dependencies between Features

In the previous examples	 each feature could be used independently� In many examples
it is however useful to write a feature under the assumption that some other feature
is available� For this purpose	 a feature declaration may require other features� As an
example consider a display adapter DisplayAdapter feature which adapts the output
of an AsciiAdapter to a graphic display� In the following example	 we show the uses
condition for a constructor DA of the former feature�

Interface AsciiAdapter

get�text �� m�String�

Feature AA implements AsciiAdapter

get�text � ���

Interface DisplayAdapter

show�in�window �� m��

Feature DA implements DisplayAdapter uses AsciiAdapter

show�in�window � ���� s � get�text� ���

The uses clause states that we can only add the constructor DA to feature combinations
which already provide for the AsciiAdapter feature� Thus	 DA�SF � is an invalid
combination	 in contrast to DA�AA�SF ��� In this way	 an implementation may use
the operations provided by the feature called AsciiAdapter in order to produce output
on a window system�
In general	 the base functionality of a new feature can rely on the functionality of

the required ones� This idea of assuming other features is similar to import relations
of module concepts� It is however novel for class or object composition concepts�
We have shown the uses construct on the feature constructor level� In some cases	

it may be interesting to de
ne this on the interface level� This is possible in the same
fashion and establishes the uses relation for each implementing constructor�
It is straightforward to extend the frame assumption for the uses construction� In

this case	 we have to state that functions of the new feature can also modify the state
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of the other� We will later show a more re
ned model	 where it is also possible to
express that a feature only reads from the the other state	 but does not write on it�

���� Parametric Features

For reusability	 it is often desirable to parameterize a feature by a type� In this section	
we introduce parametric features and parameterized speci
cations� Parameterization is
a well examined concept which is present in many programming languages� In object�
oriented ones	 one often uses parametric classes	 as for instance in Pizza �OW���	 which
is used in Chapter �� A similar mechanism for type parameters	 but without elaborate
subtyping concepts	 are C!! templates �Str���� Due to the �exible composition con�
cepts for features	 we also need expressive type concepts for composition� This problem
is more pronounced on the programming language level	 as shown in Chapter ��
For parametric features	 we simply add a type parameter to the interface and the

constructor	 which can then be used to assign appropriate types to the member func�
tions� An example speci
cation for stacks with a type parameter a is as follows�

Interface Stack a

push �� a � m ��
pop �� m ��
top �� m�a�
empty �� m ��
is�empty �� m�Bool�

Similarly	 we introduce parametric feature constructors�

Feature SF a implements Stack a

state list �� �a�
���

In this way	 we gain �exibility in a di�erent dimension	 compared to feature compo�
sition� Data types such as stacks can be used with arbitrary element types� It is
straightforward to extend this concept to several type parameters� For instance	 an
interface for an object which stores a pair of two elements can be de
ned as follows�

Interface Pair a b

pair �� a � b � m ��
first �� m�a�
snd �� m�b�

For consistency	 we require that an interface and the corresponding constructor must
have the same number of type arguments	 and	 in addition	 the two argument lists
must be identical for an implementation statement as above� Our notation for object
types extends in the canonical way to parametric constructors	 e�g� CT �SF Int �Id���
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For brevity	 we sometimes omit type parameters if not needed in the context� For
instance	 we write just f �SF f��
For specifying interactions between parametric features we may have to be careful

about the parameter types� As shown in Sections ��� and ���	 the type parameters
have to be speci
ed carefully for feature interactions� Often the type parameters have
to be compatible in some way� In some cases	 type parameters may be subject of an
interaction speci
cation�

���� Virtual Functions and Self Type

We present in this section a simple model of virtual functions and show modular
speci
cations for virtual functions� Virtual functions are a main ingredient of most
object�oriented languages� The idea of virtual functions is to bind calls to a function
within a function de
nition of some �sub��class dynamically� Such a call refers to the
function associated to the composed object at run time	 not to the one of the local fea�
ture�subclass� The problem is hence that we want to specify an individual feature	 but
do not know anything about virtual functions bound at run time� Only for a concrete
object whose type we know	 a full speci
cation is possible� Since this impedes our goal
of modular feature speci
cations	 we show in the following speci
cation methods for
virtuals�
To account for virtuals	 we just add another type parameter to each feature and

to each of its functions which stands for the type of the full object�� When creating
an object	 this type variable must be instantiated appropriately� Note that obviously
the self type parameter has to be identical for all feature �constructors� of one object�
Thus we index every function with two parameters in the following�
Consider extending the stack feature by a function push�	 which pushes an element

twice on the stack� This allows for the following implementation of a �virtual� function
push��

push�SF ����� a � push��� a� push��� a

The motivation for the use of a virtual function is reuse	 as push� does not have to
be rede
ned in the presence of other features� Further examples	 such as an equality
function	 will be presented in the following chapter	 as they require more than one
object� Observe that the second type parameter �	 standing for the type of the global
object	 is interpreted for re
nements like any other type parameters�
The novel point regarding speci
cations is that a feature can only be speci
ed by

using some assumptions on the �still unknown� object of type �� In this example	 we
need to argue about an unknown function push��� in order to specify push�� In our
framework this is possible by requiring that laws also hold for type �� This assumption
can be discharged when composing an object�

�In Section ���� a slightly di�erent formalism will be used for this� as typed objects identi�ers are
used�
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As an example for modular speci
cations	 we show how to specify push� in terms
of pushSF ����SF ���	 which is local to the feature� Our line of reasoning is instructive� to
specify the stack feature separately	 we need to assume

push�SF ����� a �SF ��� pushSF ����SF ��� a� pushSF ����SF ��� a

This allows one to argue about a virtual function push�SF ����� in terms of SF ����
Informally	 the above assumption states that no subclass can rede
ne the basic e�ect
of push�� only extra behavior can be added�
Although virtual functions are generally acclaimed for fostering reuse	 there are

many cases where simple inheritance of virtual functions without adaptation does no
su�ce� For instance	 it is unclear if push� behaves as expected if undo functionality is
added� In case of undo	 an inherited push� operation is not undone as expected	 only
one of its push operation is�
Another disadvantage is that capturing the full e�ect of virtual functions is more

involved� Since a virtual function depends on all used features at run time	 all other
features may be used� Hence it is only possible to limit the state a�ected for particular
feature combinations� This is shown in more detail in the following sections�
Interestingly	 our model for virtual functions easily accommodates a convenient

solution to one of the major typing problems caused by virtual functions� It is known
as the problem of binary methods �BCC���� and is related to the problem whether
inheritance should create subtypes �LW��	 DL��	 Ame��	 LW���� The solution to the
problem which we model here was suggested by Bruce �BSG��� �see also �AC����� The
idea is to use � for what is usually called MyType or �This type� �see for instance
Ei�el �Mey��	 which uses the name �like Current��� We will investigate this issue in
the following chapter	 as we need at least two objects for it to occur�
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Chapter �

Speci�cation of Object Networks

Whereas the last chapter has focused on the speci
cation of a single object with sev�
eral services	 we now consider the case of a larger system with a set of objects� The
reason is two�fold� First	 we want to specify objects which interact with others and
also components which consist of a set of objects� Furthermore	 we want to show that
the techniques developed so far can be extended in order to specify object networks�
Although this is in general signi
cantly more di�cult than specifying individual com�
ponents	 we can claim several new contributions�
In the following	 we add object identi
ers and talk about object networks� As well

known	 reasoning about structures with object references is quite involved	 see for in�
stance �PH���� We show that the extension to reference structures is quite canonical�
An interesting contribution is the viewpoint of a two�dimensional object store	 spawned
by object identi
ers and features� We show abstract reasoning about homogenous ob�
ject structures� The main results of this chapter include a result for semantic subtyping
for homogeneous structures and the idea of abstracting over exceptions as re
nement�
The latter is possible for the single object case �as shown in Chapter �� in a similar
fashion�
We pursue in the following our speci
cation style with equations between program

statements� As this can be tedious in some cases	 particularly for specifying invariants
on pointer structures	 we employ expressive speci
cation techniques in the usual pre�
and postcondition style with quanti
ed formulas later� This includes a discussion on
how the two styles integrate technically and methodically� Our treatment of �non�
executable� pre� and postconditions	 which may include quanti
ers	 is largely in the
lines of current literature �PH���	 but in a di�erent setting�
Another contribution is a simple type system for the basic constructs of object�

oriented languages� In particular	 we do not need an impredicative type system such
as f�bounded polymorphism �BTCGS��	 OW��� to provide for the common features of
object�oriented systems� �To be precise	 we only use matching	 not full subtyping	 as
discussed in Section ���� This is also used in languages like Java �GJS�����
Although the feature model is more general	 it gives a functional model of a �core�

object�oriented language	 based on monadic state transforming functions� This includes
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inheritance	 virtual functions	 object identi
ers with references and exceptions� We also
model so�called binary functions	 which	 roughly speaking	 can only be applied to two
objects of the same type� We do however assume that functions have a type which does
not change under inheritance	 except for some late binding of type parameters used
for virtual and binary functions� As argued in �BPF���	 this is su�cient in practice�
Hence we do not cover the well examined problems of arbitrary co� or contravariance
�as discussed in Section ����	 which means that the signature of a function may change
under inheritance�subtyping� �More formally	 the problem is to extend the subtype
relation to function types�� Although semantically problematic �Cas��� wrt subtyping	
in some languages �e�g��Mey��� functions can require parameters of more speci
c type
in subtypes�
The following presentation is in the lines of the earlier treatment� The object model

is tailored towards existing object�oriented languages� We include object references	
but do not include null pointers for simplicity�

��� A Functional Object Model

We will show in the following the extensions for a functional model of object�oriented
systems� We extend and revise the basic de
nitions as follows�

� A set of feature constructors F 	 and	 correspondingly	 a set of feature interfaces
I	 where each Fi � F is associated with one Ii � I�

� A set of object types Otypes	 which is generated by feature constructors as
follows� Fn�Fn���� � � F�� � � �� � Otypes	 where Fi � F 	 i � �	 and all Fi are
distinct� A type Fn�Fn���� � � F�� � � �� implements all corresponding interfaces Ii	
i�e� Fn�Fn���� � � F�� � � �� �� Ii for all i � �� � � � � n�

� A set of typed object ids oid�	 where � � Otypes� We write oid� �� I if � �� I and
oid��I to stand for any oid� with oid� �� I�

� A set of types T generated by base types �Int� Bool� � � ��	 oid�	 and the usual
tuple constructors �� � � � � � �� and projections �i�

� A mapping T ype �� F � T which describes the state used by a feature� As we
assume that the type of the state used by objects is the tuple of the individual
feature state	 this mapping extends to object types and typed ids in the canonical
way� T ype �� oid� � T with

T ype�idFn�Fn������F������� � �T ype�Fn�� � � � � T ype�F����

Formalizing the last mapping requires dependent types or other expressive type sys�
tems	 as the type of the object is an implicit parameter which determines the result�
Note that this is generally the case for other imperative models with object identi
ers�
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Whereas in the last section operations were modeled as state transformers on ap�
propriate values	 we simply assume there is a global object store which is transformed�
The object store includes a 
nite set of used objects and can be extended via the func�
tion new� As we aim for abstract speci
cations	 we do not give a concrete model for
such a store	 which can be found in Chapter �� Roughly speaking	 we can assume an
underlying monad of the form m a � ostore � �ostore� a�	 where ostore is the type
of the global object store� Thus the function run invokes an operation with an initial
object store os and returns a pair of the computed value val and the updated object
store�
Next	 we have to clarify the meaning of equality for an object model� The point

is that equality between two computations refers to all objects which exist after the
execution of the two computations� If two computations result with two di�erent sets
of objects	 their states are incomparable� Clearly	 equality assumes that both computa�
tions are invoked with the same set of objects� For instance	 x � new�SF� � unit

does not hold	 since the number of alive objects on both sides di�er� Note that lo�
cally bound variables	 here x	 are immutable	 which often simpli
es reasoning about
programs�
The de
nition of the object store is based on the idea that we can treat the access

to the state via base access features� Therefore	 the operations get	 put	 and new are
supplied by some dedicated features� Unlike user de
ned features	 these use depen�
dent types as the type of get and put depends on the �type of� the used identi
er�
Furthermore	 these operations are the only ones allowed to access the state� Other
features must state that they use the base feature� To allow a 
ne grained control	 we
separate these access functions into three base features� The main advantage of this
viewpoint is that we can use these features to give other features access rights to state�
Furthermore	 we can distinguish features which create new objects and those which do
not�
The base features of the object store are as follows�

Interface StoreReader

get �� oid� � m�T ype����

Feature SR implements StoreReader

Interface StoreWriter uses StoreReader

put �� oid� � m�T ype����

put x d �� get x � result d

x �� y �� put x c� put y d � put y d� put x c

put x c� put x d � put x d

Feature SW implements StoreWriter
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Interface StoreCreater

new �� � � m�oid��
y � new� �� result x �� y � result True

x � new�� y � new� � y � new�� x � new�

Feature SC implements StoreCreater

Concrete implementations of the above functionality can be found in Chapter ��
For the interaction between the StoreCreator and the reader�writer	 we have the

following equations�

y � new�� put x c � put x c� y � new�
y � new�� z � get x � z � get x� y � new�

In the above	 y is new bound variable and is hence di�erent from x� We assume that the
feature combination SR�SW �SC�� is omnipresent as the base feature in any feature
combination	 similar to the base feature Id in earlier sections� For convenience	 we
generally omit these and write for instance SF instead of SF �SR�SW �SC��� Note
that we do not explicitly specify valid object references� We generally assume that
all used object identi
ers are valid� This is possible	 as new is the only way to create
elements of the type oid�
In contrast to the last section on virtual functions	 we assume that object ids are

typed and do not mark operations with two type parameters� By convention	 the 
rst
parameter of every function is the object it works on �which is often called self�� In
general	 our model is similar to multi�methods	 as described in �CL��a��
Furthermore	 we parameterize not only object identi
ers but also features with the

type of self� These have to be instantiated appropriately when creating objects via
new� This is needed to formalize the possible e�ect of virtual functions in a feature on
the level of features� In case a feature does not use virtuals or does not have other type
parameters	 we may omit this type for brevity�
For instance	 the stack feature with a virtual function push� is formalized with �	

standing for the type of self	 as follows�

Interface Stack �

push �� oid� � Int � m ��
pop �� oid� � m�Int�
empty �� oid� � m��
is�empty �� oid� � m�Bool�
push� �� oid� � Int � m ��

push� self� a � push self� a� push self� a

Feature SF � implements Stack �

push self� � pop self� � unit

���
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Similarly	 as shown above	 we parameterize feature constructors� We annotate the
functions provided by features with an additional type for the purpose of overloading
as before� For a statement like f� objF ���	 we assume that � is a subterm of F ����
Since F is unique in �	 we often write fF instead of fF ���� For virtual functions	 we
de
ne

f self� � f� self�

For instance	 push selfCF �SF � � pushCF �SF � selfCF �SF ��
The following examples illustrate how the type of self and other parameters can

be used for assigning precise types to functions� Consider for instance a function
add�stack	 which adds all elements of another stack to itself� Its type is add�stack ��
oid� � oidStack � m�� since all we need to assume about the second parameter is
that it provides for the stack feature� A variation of add�stack is add�stacks	 which
adds the elements of self and an object passed as parameter to a new object� Its type
is either add�stacks �� oid� � oid���Stack � m�oid��	 if the resulting object is of the
type of self� Alternatively	 it can be the type of the other parameter	 as speci
ed via
add�stacks� �� oid� � oid���Stack � m�oid���
These typing techniques yield a simple solution to the problem of binary func�

tions� The typing problem for binary functions has led to an extensive discussion	
see �BCC����� As another typical example of a �binary� function	 consider the func�
tion is�equal �in an appropriate feature�� Clearly	 this function should only compare
objects of the same type� Hence it can only accept an object with the same type �as
the full object at run time� as parameter� To account for this	 we use the type

is�equal �� oid� � oid� � m�Bool�

This type assures that we can only compare two objects of the same type ��

Speci�cation of State E�ects

A common problem of object networks is the speci
cation of the e�ect of some operation
on the global store� As in the last chapter	 we use restricted versions of equality� In this
case	 we can restrict both the features and the object to be compared� We index � by
two parameters	 a type and a set of objects �where both can also be single features or
objects	 respectively�� Formally	 a parameterized equality predicate �F�o	 where o � oid	
only compares the state of the feature F for the object o� This extends component�wise
to �fF������Fng�O	 where O � oid� Similarly	 a �� b is the conjunction of all a �F b with
� �� F � With equality restricted to particular objects it is possible to compare object
stores which di�er in the number of created objects�
As with equality	 we can generalize the functions get and put by indexing them by

a set of object ids� Note that speci
cations using these functions must also account for
newly created objects�
The last de
nitions can be illustrated by a two dimensional object store in Fig�

ure ���	 spawned by features and object ids� With the above base features	 we can
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object � object  object � object � ���

SF
CF
BF
UF
���

Figure ���� �Dimensional Object Store

formalize the possible state e�ect of some functions� Instead of an assumes condition	
which permits to use operations of other features	 we can be more precise with the
above functions� In this way	 we reduce uses clauses referring to other features to ap�
propriate clauses referring to SR and SW and similarly for SC� The general assumption
is that a feature can access its own state and can create objects of its own type� In
case a feature uses another feature F 	 this is equivalent to assuming the access rights
of F � For read access to a feature F 	 we can assume SRF � This in turn means that we
can only use functions of F which do not write the state�
As an example	 consider the display adapter of Section ����	 which reads informa�

tion from the constructor AA of the AsciiAdapter feature� As it does not write onto
the state of the latter	 we can write�

Feature DA implements DisplayAdapter uses SRAA
show�in�window x � ���� s � get�text x� ���

Such speci
cations are also possible for generic speci
cations which a�ect a set of
features� For instance	 the undo feature reads the state of all inner features �wrt the
layered composition�� It does however not write on the state of these nor create objects�
This is expressed precisely via

Interface Undo �

undo �� oid� � m��
set�mark �� oid� � m��

Feature UF � implements Undo � uses SRUF ����SWUF
set�markUF ��� x � ���

Note that we can use such generic access constraints only via the type used for anno�
tating the feature functions�
For a function on a composed object	 the possible state e�ect is determined by

all available features� In the presence of virtual functions the full e�ect of a func�
tion in a particular feature depends on the features present at run time� Hence only
approximations are possible�
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As we deal with a network of linked objects	 the access restriction via uses allows
the speci
ed access to the state of a feature in all �reachable and new� objects� This is
clearly too coarse in some cases	 but on the level of features we cannot talk precisely
about the state e�ect	 since object identi
ers can be passed as parameters of functions�
The only known objects at the feature level are the self object and possibly referenced
objects via instance variables� Hence we extend our formalism in the following to a
more precise speci
cation of the objects which may be a�ected� For an operation f we
write

f uses SRF�Oid� SWF ��Oid�� SC�

where F� F � are features	 Oid�Oid� are sets of object identi
ers and � is an object type	
if the �maximal� e�ect of f is limited to

� read access to the state of the feature F of the objects in Oid	

� write access to the state of the feature F � of the objects in Oid� and

� write access to newly created objects of type ��

Since this is in general insu�cient	 we generalize it to sequences of SRF�Oid	 SWF ��Oid�	
and SC�� For convenience	 we often use sets of features �also given via an object type�
instead of a single feature� Also	 singleton object sets are abbreviated by the single
object�
We can now translate a clause uses F into assumptions on base features� As an

example consider

�fF self� id��� uses SRF�self � SR���id� SWF ��id� SC�

where �by de
nition� � �� F and �� �� F �� Thus	 the operation fF self� id�� may
read from the feature F of �it�self and all features of object id	 write to feature F � of
object id and create objects of type �� Observe that this state access description is
con
ned to one object� For linked objects	 we often have to talk about other objects
as well	 including newly created objects� More examples will be presented later with
lists represented via linked objects	 where e�g� appending a new element may have a
similar speci
cation as the above�
Depending on the �cumulative� access to SR	 SW	 we can formalize the e�ect of a

function as a single read access to the readable feature state	 followed by a correspond�
ing write access to the accessible features� Note that this is more involved if objects are
created	 i�e� the SC feature is used� In this case	 the number of created objects may de�
pend on the read values� Furthermore	 write access to the new objects must be granted�
For instance	 for the above de
nition of fF �� oid� � oid�� � a	 we can formalize the
e�ect as follows	 assuming for simplicity that exactly one object is created� Again	 we
use a side�e�ect free function f��� T ype�F � � T ype���� � �T ype�F ��� T ype����� a� to
describe this as

�f��fF self� id � x � getF�self � y � get���id�
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�iv�nv�res� � result f��x�y��

putF ��id iv� n � new�� put� n nv� result res

In case an operation creates several objects	 the above has to be generalized appropri�
ately� This is more involved	 since the number of created objects depends in general
on the read values� A fully precise formalization of the e�ect is not pursued here	 since
we aim for abstract reasoning in terms of the store access features��

Apart from speci
cation and documentation purposes	 bounding the state e�ect of
an operation is important for formal reasoning� We often have to reorder operations
when proving properties of operations �see also Sec� ����� This abstract reasoning
technique aims at reordering two operations� In particular	 we can swap the operations	
i�e�

fF � gG � gG� fF

if the following conditions hold�

� fF does not write on any state which is read or written by gG� Formally	 if F
uses SWH�id	 then G uses SWH�id or G uses SRH�id must not hold�

� fF does not read any state which is written by gG� Formally	 if F uses SRH�id	
then G uses SWH�id must not hold�

We will discuss examples of reorderings in Section ������

����� Speci�cation of Invariants

So far	 we have speci
ed features by equalities on program constructs� When working
with linked object structures	 it is frequently needed to specify an invariant over object
references� We will present an example with linked lists below� for further examples	 we
refer to �PH��	 MPH���� We will see that we must assume invariants for some types�
The need for this in an object�oriented setting was already recognized �MPH���� In
case of feature combinations	 the invariant depends on the used features� We discuss
in this section techniques for specifying invariants�
In predicate logic speci
cations	 it is convenient to use quanti
ers� For instance	 to

express that some object is reachable from some other one	 an existential quanti
er over
object identi
ers immediately solves the problem� Such high level speci
cations with
existential quanti
ers have the drawback that they have no computational content�
For instance	 if invariants are speci
ed with quanti
ers	 they cannot be executed for
run time checks� Also	 they can in general not be used to simplify program fragments
directly	 as with equations on programs�

�Specifying the e�ect on newly created objects appears to be simpler with the techniques developed
in the next section� where we talk about the set of alive objects�
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In the following	 we 
rst introduce the formal model for predicative speci
cations
and then discuss some typical applications� We discuss how such speci
cations inte�
grate with our program�level speci
cations� Considering only the pre� and postcon�
ditions	 the following treatment resembles existing approaches like �PH���� The main
di�erence is that we still use the speci
cation techniques developed earlier	 comple�
mented by pre� and postconditions for invariants�
We will use such non�executable speci
cations for invariants only� Then the integra�

tion with the previous speci
cation techniques is straightforward� It yields a framework
for structured proofs	 where the reasoning about invariants is performed separately
from the reasoning about the result or e�ect of a computation� As an example for this
methodology we show linked lists in the following section�
Usually	 pre� and postconditions express properties of the current	 global state	 but

do not modify the state� We can characterize pre� and postconditions as predicate
logic formulas which use state�reading monadic functions� This entails that the order
of the operation is irrelevant and the operations can be used freely� For convenience	
we often use programming level expressions of type m a in such conditions simply as
type a	 e�g� x instead of result x� We use the same syntax with implications �� as
before	 but write non�executable predicates in italics�
Furthermore	 our setting allows one to quantify over objects	 types and individual

features� For instance	 we can de
ne a predicate refers to on a pair of object identi
ers
�x� y� to express that y is reachable by a direct link from x via

refers to�x� y�	 �F � F �getF x � y

Observe that we need to quantify over features� To be more precise	 projections as in
�i� F � F ��i�getF x� � y have to be considered as well if features use tuples for the
state�
With this predicate	 we can specify that some operation preserves this property�

refers to�x� y� �� op x y �� refers to�x� y�

The meaning of this formula can be explained by making the global object store explicit�
In addition	 we parameterize predicates by a variable for the global object store os and
assume that get behaves on os as expected� Then the above translates to an extended
predicate with refers to� instead of refers to and makes the implicit store explicit�

refers to��x� y� store� ��

�val� store�� � run �op x y� store �� refers to��x� y� store��

Note that we store the result of run in local variables by using monad notation� As
this translation is straightforward and similar to techniques in �PH���	 we do not go
into details of translating all operations into equivalent ones with explicit store�
It is instructive to see how we can link the programming level and quanti
ed pred�

icates� For instance	 consider the following easy consequence�
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putF x y ��� refers to�x�y�

A similar example is the following�

y �� z 
 �refers to�x�z� �� putF x y �� �refers to�x�y�

In many examples of linked structures it is useful to talk about the objects which
are reachable from some object�
The following non�executable predicate Reach�x� y� determines if y is reachable

from x�

Reach�x� y� � �F �� F �y � getF x �

�z �� Oid�Reach�x� z� 
 Reach�z� y�

We can also de
ne a version ReachF �x� y� of Reach which only considers references via
feature F �

ReachF �x� y� � �y � getF x� �

�z�ReachF �x� z� 
 ReachF �z� y�

A common application of Reach is alias avoidance� For instance	 to require that
two di�erent objects are unrelated by referencing	 we can use a precondition as follows�

�Reach�x� y� and �Reach�y� x� �� s�x�y� � t�x�y�

A typical example is to bound the number of objects a�ected by an operation
on some object� In case of linked objects	 it is di�cult to bound the e�ect of some
operation� This problem is also known as the frame problem	 as examined for pre� and
post�condition style speci
cations of object�oriented programs in �BMR����
It is not su�cient to consider the objects reachable from the object	 neither before

nor after the operation� We have to quantify over the objects reachable before the
operation plus all new objects� It is not su�cient to consider the objects which are
reachable afterwards	 since this may be smaller than the corresponding set before the
operation� For this purpose	 it is convenient to talk about all active or alive objects�
Since this set varies	 we sometimes have to be more explicit about alive object identi
ers
in predicates� For instance	 if operations create new objects of a particular type	 we
want to identify the new objects which have not been present before the execution of
the operation�
To specify the set of alive objects	 we assume a function

alive �� oid� � Bool

A concrete implementation of alive is straightforward in a concrete implementation of
an object store	 as for instance in Chapter �� A speci
cation of the properties of alive
can be found in �PH����
We can specify some of the interesting properties as follows�
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x � new� �� alive x

alive x �� op �� alive x

This states that new objects are alive and that the set of active objects does not change
under any other operation� Hence	 an object can only be created via new and cannot
be deleted�
The predicate alive is used for invariant speci
cations only� It is not needed

otherwise	 as we do not allow unde
ned objects in the language� For convenience	 we
write x � Alive� As an example for alive	 assume we want to compare the objects
which were present at the start of a computation� This is possible via the following
scheme�

� x �� Oid� alive x �� s �x t

We can restrict equality to new objects as follows�

� x �� Oid� � alive x �� s �x t

Further examples and detailed veri
cation examples can be found in �PH����

����� Example� Linked Lists

In the following	 we discuss an example with a common pointer structure	 linked lists�
We show that singly linked and double linked lists can be created in modular fashion
by individual features �and via binary functions�� For modularity	 we split the list
nodes into three parts� First	 there is the contents of the list elements	 for which we
use the class Cell with a parameter indicating the type of the cell content�

Interface Cell �

put�cell �� oid� � � � m ��
get�cell �� oid� � m���

Feature Cl � implements Cell �

���

The second feature is used to created singly linked lists� This feature introduces the
known functions on lists	 such as insert �at the front� and append� It also employs a
function abs�list which returns the full list in a functional data type� More precisely	
it returns a list of the object ids of the elements� This function can be seen as an
abstraction function in the sense of �PH���	 which are used to specify object networks�
We 
rst specify the forward link�

Interface Fd�link �

empty �� oid� � m��
is�empty �� oid� � m�Bool�
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set�next �� oid� � oid� � m ��
next �� oid� � m �oid��
append �� oid� � oid� � m ��
abs�list �� oid� � m ��oid���

data Option a � Some a � None

Feature Fd � implements Fd�link � state link � Option oid�
empty self o � putFd None

is�empty self � l � getFd� result �l��None�

set�next self o � putFd �Some o�

next self � �Some n� � getFd� result n

append self o � l � getFd�

case l of None� set�next self o

�Some n�� append n o

wfFd �� l � abs�list y� set�next x y ��

abs�list x � result �x��l�

wfFd �� l � abs�list y� append y x ��

abs�list x � result append�list�x�l�

wfFd �� x�l � abs�list x� y � next x �� abs�list y � result l

wfFd �� empty x �� abs�list x � result ��

wfFd �� is�empty x �� True �� abs�list x � result ��

wfFd �� empty x �� wfFd
wfFd �� is�empty x �� wfFd
wfFd �� set�next y x �� wfFd
wfFd �� next x �� wfFd
wfFd �� append x y �� wfFd
wfFd �� abs�list x �� wfFd

Note that the above code declares a data type Option and uses functional operations
like append�list�� �a� � �a� � �a�� The predicate wf assures that all lists with this
feature are well formed� According to our methodology	 we specify the e�ect of the
operations separately from the preservation of this invariance� The well�formedness
predicate wfFd can be formalized as follows�

wfFd � �x �� oid���Fd��ReachFd�x� x�

where ReachFDd link is speci
ed as above	 with the restriction that only links via the
feature Fd are considered� Note that we cannot specify this invariant on the interface
level� Therefore	 we cannot write any speci
cation on the interface level	 as we need
to assume that the invariant holds�
Observe that this speci
cation permits that a list element is reachable from itself

via other objects� This occurs in doubly linked lists and also in case it is attached to
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a feature with an object reference�
The following feature adds a backward link to linked lists to create what is usually

called doubly linked lists�

Interface Bk�link � uses Fd�link �

set�prev �� oid� � oid� � m ��
prev �� oid� � m�oid��

Feature Bk implements Bk�link state �� �Option oid��
set�prev self o � putBk o

prev self � �Some p� � getBk� result p

wfBk �� set�pref self x �� wfBk
wfBk �� prev self �� wfBk

�� Interaction handling

emptyBk � lift empty

is�emptyBk � lift is�empty

set�nextBk self o � lift set�next self o� set�prev o self

nextBk � lift next

append Bk � lift append

In this example it is instructive to see that	 using our concepts for binary functions	
only homogeneous lists are possible� Thus lists are either singly or doubly linked	 but
a mixture is not possible�
The well�formedness condition for linked lists is slightly more involved	 since back�

ward references have to be the inverse pointers of the forward references� It can be
formalized as follows�

wfBk � wfFd 
 �x �� oid���Bk��is empty x �� prev�next�x�� � x

This assumes that pref and next only read state� We will show later in Section �� that
a doubly linked list is a conservative extension of a singly typed one which preserves the
speci
cation of singly linked lists� Additional properties of doubly linked lists follow
immediately from the invariant�

wfBk �� n � next o �� prev n � result o

There is an alternative version of Fd�link	 which allows to de
ne abs�list in a more
interesting way� The idea is to assume the store feature to access the inner state� Hence
the function abs�list can return a list of values	 not just oids�

Interface Fd�link� � � uses Store �

set�next �� oid� � oid� � m��
next �� oid� � m�oid��
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append �� oid� � oid� � m��
value �� m���
abs�list �� oid� � m�����

The speci
cation and implementation of Fd�link� is similar to the above and can use
the store feature to access the local state of the inner features� Thus	 it is for instance
possible to link any objects of the same type which support the store feature�

����� Formal Reasoning in Object Networks

We show in the following some of the problems of proving properties about object
networks� A particular emphasis is put on abstract and reusable proofs� Since we
do not reason explicitly about how state is a�ected	 we hope that the techniques are
scalable to larger systems�
Our proof methodology is to swap the operations such that the state readers are

moved towards the left and hence the other operations can be executed symbolically�
In case one operation uses on the output of another one	 this dependency disallows
swapping the two operations� As an example	 consider extending the counter by a
method add	 which adds a value to it� One rule for add may be the following

add self x� add self y � add self x
y

With this rule	 we want to simplify

add self x� y � size self� add self y

Clearly	 the last operation depends on the second one� Note that we cannot swap these�
Thus	 we have to swap the 
rst two operations and adapt y in the last operation as
follows�

y � size self� add self x� add self �y
x�

Note that the last operation not only uses the newly computed value	 but also modi
es
the state used by the state reader function size�
In general	 reasoning about the e�ect of a method on the global state can be quite

involved if references to objects are used� The idea is to argue that some functions	
including their e�ects on other objects	 can only touch certain features� This can be
used to reshu e operations of di�erent features� Observe that the variations of equality
are nicely illustrated as horizontal or vertical slices as shown in the last section� Thus	
restricting equality to certain features just compares the appropriate lines in the object
store	 whereas restricting to object identi
ers compares only certain columns� This
essentially yields an upper bound for the state a�ected by some methods� Although this
is just an approximation	 it is su�cient in many cases� In particular	 the approximation
is not a�ected if the globally used state is extended� Hence proofs may be reused under
extensions�
Let us 
rst summarize the state e�ect of the linked list functions�
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nextFd j uses RSFd j

appendFd j k uses RSFd� ReachFd k� WSFd� ReachFd k

get�cellCl j uses RSCl j

With the above	 we can for instance prove that

i � next j� append j k � x � get�cell j

is equal to

i � next j� x � get�cell j � append j k�

Note that i��j follows from the invariant for lists	 which obviously has to hold initially�
As the object identi
ers i and j are not mutable variables	 i��j for the full operation
sequence� This simpli
es the proof in this case�
In general	 reasoning about linked structures with sharing is quite di�cult �see also

�PH��	 Moe����

��� Re
nements and Subtyping in Object Networks

We discuss in the following the adaption of the re
nements discussed in Section ��� to
object networks� Since speci
cation of object networks is considerably more di�cult	
we cannot expect the same simple results� We will need additional requirements and
identify cases which are still tractable by our techniques�
The 
rst observation is that invariants must be preserved when operations or pro�

grams are lifted to a new feature combination� For instance	 we have seen in the linked
list example that doubly linked lists require an extra invariant �plus the one for singly
linked lists�� For behavioral re
nement it is clearly required to establish the added
invariants� Even for weak behavioral re
nement	 it is not su�cient to establish the
extra invariants under an abstraction�
We associate invariants with object types and generally require that the invariants

are preserved globally for all involved objects of the appropriate type� �This is similar
to �PH���	 where however semantic subtypes are not considered�� It it is not the case
that a method which works correctly on a feature	 say linked lists	 works correctly on
a subtype with extra invariants� For instance	 linked lists are often used with di�erent
entry points� A common problem is that sharing may cause the violation of invariants
in structures	 which may go unnoticed with simple behavioral subtyping as discussed
in the last chapter�
Consider as an example a lock feature on linked lists	 which works as the lock

feature presented earlier but locks all objects in the linked list� Hence the invariant
is that either all objects are locked or none� �A similar	 common example are colored
lists with the invariant that all list elements have the same color�� Hence locking a list
which is a �shared� sublist of another one breaks this invariance� In this case	 we need
a global invariant which ensures that for all lists the elements have the same state�

��



We will present a generic result similar to Theorem ���� in the next section	 which
covers the case of linked lists� We will show that doubly linked lists are a conservative
extension	 since singly linked lists are only extended	 but not modi
ed�
Behavioral re
nement works as in the case of one object	 except that invariants

have to be considered� For instance	 we want to show that doubly linked lists do ful
ll
the laws for linked lists� Behavioral re
nement holds in this case	 since both features
use the same object network� For instance	 the equalities �on all objects� of the linked
list speci
cation hold for this extension as well� Note that we also have to show that
the invariants of both features are preserved�

����� Weak Behavioral Re�nement

Weak behavioral re
nement is signi
cantly more di�cult for object networks� The
idea of weak re
nement is to abstract from some feature and to show that laws hold
under this abstraction� The problem is that the e�ect of a function call is not limited
to one object� In particular	 other objects of di�erent type can be involved� Hence it
is di�cult to abstract from a feature with our earlier techniques and to look only at
the e�ect of particular features� This is particularly di�cult in case new objects are
created	 as we cannot 
x the number of modi
ed objects before the method� Thus
we largely focus on simpler cases where no objects of di�erent types are used or are
ignored�
Assume we want to lift a property for a function f for an object of type � to F ����

The problem is to separate the e�ect of f x� and the new feature F in f xF ���� In the
case of a single object	 this is possible in a schematic way using types in many cases�
In this setting	 it is useful to distinguish the following cases�

� The object has no object references� Then we proceed as in the case of one object
and specify via equality on a single object	 e�g� f x �x � � ��

� Another typical case are homogeneous structures like linked lists� Here	 we can
abstract from the new feature for all objects of this type� Thus re
nement spec�
i
cations are of the form f xF ��� �� � � � This case will be considered below with
schematic abstractions�

� In the remaining case	 objects of other types are involved� These can also appear
as function parameters� Hence in general we need to abstract from the e�ect
of the added feature� This is not generaly possible with schematic abstraction
techniques�

We present a result for semantic subtyping for the 
rst two cases in the next section�
In our setting	 speci
cations which only talk about one object or objects of one type
can be handled generically� The reason is that the used abstractions are constructed
via the object types� Thus	 other speci
cations can only be lifted partially with this
result�
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Since speci
cations for the last case cannot be treated schematically in our setting	
we do not pursue this case further� Note that it is clearly possible to use our speci
ca�
tion techniques for lifting individual speci
cations� For more complex object networks	
it seems more promising to work on the level of functional abstractions� Compare for
instance the representation of linked lists with the functional representation of lists
used for stacks� A formal veri
cation of an algorithm using linked lists can be found
in �PH���� Since we have shown the essential concepts of the formalism of �PH���	 it
is possible to model these results in our setting�

����� Semantic Subtyping with Object Networks

In the context of object references we can rephrase the problem of semantic subtyping
for parameter passing� Assume we de
ne a function which uses an object of some type�
In a concrete application	 an object of a subtype of the expected type is used instead	
e�g� when passed as parameter� The question is under which conditions speci
cations
or proofs about the function still hold for the more speci
c parameter�
Consider a typical example for weak re
nement� Assume the following function

de
nition�

f�xStack� � push x �� pop x

For the parameter x	 all we can assume are the stack laws� �Recall that xStack stands for
some � with x���Stack�� In case of an invocation of f with an object y of type UF �SF �	
we can show the following�

f�yUF �SF �� �SF unit

This equation does not hold for UF �SF �� Hence we have to abstract from the undo
state recording� Therefore	 UF �SF � is only a weak re
nement of SF �
For reasoning about procedures	 a typical problem is aliasing	 which is even possible

for variables of di�erent type� We need to use case distinctions for reasoning in the
presence of aliasing� Consider the following de
nition�

f��xStack� yStack�Undo� � push x �� lock y� push x �� unlock y� pop x

In case of an invocation with distinct parameters x and y we can show the equation

xSF �� yUF �SF � �� f��x� y� � push x �

In case of aliasing	 we can prove�

x �� yUF �SF � �� f��x� y� �SF�x unit

This only holds since we can infer that x has also type UF �SF �	 and hence the re
ne�
ment rules for this type also hold for for x� Thus	 to reason about object references
with aliasing	 we need to consider appropriate case distinctions�
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Aliasing is a special case of sharing� To ensure consistency for shared reference
structures	 we need invariants� For instance	 we have seen in the linked list example that
doubly linked lists require an extra invariant	 compared to linked lists� As shown above	
this extra invariant is not automatically preserved by an operation of a supertype�
For instance	 to use a procedure which uses a linked list as parameter with a doubly
linked list	 we must require that the procedure maintains the invariant of doubly linked
lists� In case of sharing of data structures	 we therefore have to guarantee the subtype
invariant for all objects�
Assuming that invariants are preserved	 we can extend the de
nition of conservative

rede
nitions to the case of object nets� To simplify the presentation	 we only consider
functions with one argument� Since objects may store references	 this is not a general
limitation�

De�nition ����� A method rede
nition of a function f� for fF ��� is called conserva�
tive	 if

f xF ��� �� f� xF ���

and furthermore f xF ��� preserves the invariance properties of the feature in F ����

Note that the equality in the above de
nition must hold for all objects which have
these features�

Theorem ����� Assume an operation sequence op and a function f such that

f x� �� op

holds� If op and f only use operations which do not a�ect the features in F ��� �including
invariants	 or functions of � which are conservatively rede�ned from � to F ���� then

f xF ��� �� op

Proof The proof proceeds as the one for Theorem ����� The di�erence is that we
use equality on the features in � for all objects� Hence the functions used by f xF ���

either do not a�ect these or are reducible to the ones in f x�� In addition we have to
establish the invariants here	 which follow from the assumption that it is guaranteed
by each individual operation� �

This result goes beyond the corresponding results for semantic subtyping in �DL��	
LW���	 as we cover object references� �More precisely	 abstraction functions on single
object	 as used in �DL��	 LW���	 are not su�cient for this purpose�� Note that problems
with aliasing were already recognized in �DL��	 LW���	 but not wrt linked structures�
Note that our de
nition above only considers invariants for one feature wrt all

objects� In the general case	 all invariants of all features have to be considered	 as
shown for object�oriented systems in a recent report �MPH����
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It is easy to verify that this theorem applies to doubly linked lists	 which can hence
be used as a subtype of linked lists� Another example are lists with the undo or lock
features� As with Theorem ����	 it is easy to extend the result to the combination of
several features� This theorem also entails weak behavioral re
nement for a speci
ca�
tion on a single object with no references as a special case�
It would be desirable to extend this result for non�homogeneous structures	 in order

to account for the e�ect of other objects of di�erent types� Our generic abstractions
are in general not su�cient for this case	 since the newly added behavior must be
�separated� from the old one� As we cannot use schematic abstractions	 this has to be
done on an individual basis using restricted equalities� Furthermore	 the combination
of such individual re
nements	 which is essential for composing several features	 does
not work schematically as well�

��� Exceptions

We show in the following that another common ingredient of programming languages
can be modeled easily in our setting� Exceptions are a technique to treat program
errors in a convenient and also systematic way� For instance	 the pop operation on an
empty stack is unspeci
ed so far� it could either do nothing or raise an exception	 since
no sensible return value exists� In many languages	 for instance in Java �GJS��� or
SML �MTH���	 exceptions are provided� Exceptions are raised either by the run�time
system or by applications� For simplicity	 we limit our attention to the latter� In case
an exception occurs	 all computation is stopped and control is passed to the next error
handler in the call stack� For a detailed treatment for exceptions	 we refer to �Fla����
It super
cially appears that exceptions are similar to the lock feature	 which disables

other features� However	 the lock feature only disallows write access to the state of an
object� It cannot disable the return values of computations	 as it is still on the level
of the programming language� In contrast	 the usual model for exceptions introduces
error cases which abort any computation� This is usually modeled via monads as
follows� A computation of type

m�a�

is enhanced by error cases by instantiating m to

m�a� � m��Err a��

where Err is a datatype constructor which adds an error element to any type a via
the following de
nition of a sum type where j separates the type options�

Err a � Error j Data a

As we use pattern matching	 the two constructors Error and Data su�ce and selectors
are not needed� For simplicity	 we do not model di�erent error or exception cases� In
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Section ��� it is shown that adding an extra parameter for more detailed exception
information is straightfoward�
The �partially� instantiated monad m� can be further instantiated as done earlier

for state transformers� With m��a� � ostore� �ostore� a� we obtain

m�a� � ostore� �ostore� Err a�

With this monad construction	 we can add error values to any speci
cation if needed�
�We will however do the instantiation in the reversed order�� Recall that adding ex�
ception handling later is one motivation for keeping the monad m abstract�
Assuming the above monad construction	 we can de
ne the following additional

base features used for exceptions� We de
ne the functions for raising and handling
exceptions as follows�

Interface Error where

raise�err �� m ��

Feature ER implements Error

Interface ErrorHandler where

read�err �� m a � m Bool

Feature EH implements ErrorHandler

As for the store features	 we split the exception treatment into two features to give a
more 
ne grained control via features�
The function raise�err raises an exception� Detecting an exception can however

not been done at the programming language level with monadic functions� The reason
is that by de
nition all operations are fully disabled� Therefore	 we need a function
read�err for this purpose	 which maps a computation over a to m Bool	 where the
boolean value indicates if a exception has occurred� This simple version discards the
value of type a if no exceptions has occurred� It is a simple extension to pass the
computed value	 if it exits�
The function read�err maps computations to computations of di�erent type� the

expression read�err op returns a new computation which indicates if an error has
occurred� Note that the global state is passed on to the resulting computation	 which
remains unchanged after an error has occurred� For instance	 assuming that pop raises
an error for an empty stack	 we can guard such a command via read�err as follows�

err � read�err�x � pop id� y � pop id�� if err then ����

By construction	 the actual types of values x and y are lifted over error cases� Hence
they can only be used inside the computation passed to read�err	 which corresponds
to the scope of the local de
nition�
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This construction is similar to other programming languages	 where usually an
extra syntactic construct is provided for raising and handling exceptions� For instance	
in Java �GJS��� one uses the keywords try and catch to write the above as

try f x � id�pop��� y � id�pop��� g
catch�Error� f ��� �� error handling code g

Note that a Java statement calling a method of an object id with no parameter is
denoted as id�pop����
As with state access	 we model exceptions as a prede
ned feature� Similar to the

global state and object references	 exceptions do not a�ect just a single object� Hence
we add the underlying monad construction for exceptions similar to the state access
features�
To accommodate exceptions	 we have to rede
ne the basic monad operations� These

vary for di�erent monads and have so far been tailored for state transforming monads�
In particular	 the sequencing operator � � � �� m a � �a � m b� � m b has to
check for errors� For a sequence f � g the second operation is bypassed if an error
occurs� If not	 the �internal� resulting value of type Err a is of the form Data x	 and
x is passed on as parameter to g	 which is of type a� m b� Furthermore	 the result
function has to embed the value into the new data type� We show these rede
nitions in
detail in Section ���� and give a more abstract speci
cation of exceptions here� Before
this	 we have to de
ne equality on operations which may use exceptions� The canonical
answer is to compare the resulting values of type Err a instead of just a� Hence an
equation

op � op�

compares the resulting state	 the error condition	 and in case of no error	 the resulting
value� For the restriction to the state of some feature F of the form

op �F op�

the equality holds if the state of the feature and the computed value are equal	 unless
an exception occurs�
Similar to the restriction of equality to state	 we de
ne that

op �ER op�

holds exactly if op and op� either both raise an error or produce the same result� Thus
the implicit state change is ignored�
In many cases	 the opposite of the above is interesting� De
ne

op ��ER op�

as op and op� produce the same result if none raises an error� The subscript �ER can
be seen as a shorthand for omitting ER in the list of the compared features�
As computations are modeled as data objects	 we can de
ne this equality simply

by comparing the resulting pair of a computation of type �Store� Err a�� Hence
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op ��ER op�

holds i� run op � run op� � �ostore� res� or run op � �ostore� Error� or run
op� � �ostore� Error��
In comparision to generic speci
cations like the one for the lock feature	 we cannot

determine the behavior solely via types� Hence our speci
cation is more operational
as we must assure that raise�err is not invoked in the operation sequence op	 which
is done via a conditional rule below�

raise�err� f � raise�err

read�err �raise�err� � result True

read�err �result x� � result False

read�err �f� op� � f� read�err �op� � f ��ER raise�err

The important point of this speci
cation is the f ��ER raise�err condition� The
equality expresses that f does not raise an exception	 since it is unequal to the function
which raises an error� Note that there is only one function of this type which injects an
error� To understand the scope of the third rule	 recall that unit � result �� holds�
An easy consequence of the above is the following�

read�err �f� raise�err� � f� result True if f �� raise�err

As an example	 we use the exception mechanism to rede
ne the stack operations� An
important di�erence to the base storage features is that we want to add exceptions as
an extra feature� In this way	 we can use the exception mechanisms only if needed� In
case an application can exclude stack under�ow �or cannot react appropriately�	 then
the exception mechanism should not be used� Our technique is to introduce a new
feature	 here ErrStack	 which uses ER	 and to lift other features to the new feature ER�
In particular	 the pop operation has to be rede
ned�

Interface Error where

stack�err �� m a

Feature ES implements Error uses ER

stack�err � raise�err

popER self � ifseq �is�empty self� then stack�err else lift �pop self�

pushER self � lift �push self�

���

Note that the lift operation also has to be rede
ned for error monads	 as shown in the
following chapter� Clearly	 the usual laws for lifters must hold�
It is instructive to evaluate the following code with the above rules� We 
st unfold

the de
nitions of pop and if and then push is�empty out of the read�err scope�
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empty idER� er � read�err� x � pop idER�

� empty idER� er � read�err� x � ifseq �is�empty idER�

then stack�err

else lift �pop self��

� empty idER� b � is�empty idER� er � read�err�x � if b

then stack�err

else lift �pop self��

� empty idER� er � read�err� x � if True then stack�err else lift pop�

� empty idER� er � read�err� stack�err �

� empty idER� result True

In case some object uses exceptions	 we assume that its object type is of the fol�
lowing form�

F�����Fn�EH�ER�SR�SW �SC����� � � ��

As before	 we often omit the base features EH�ER�SR�SW �SC���� and indicate the
usage via uses statements�

����� Exceptions and Re�nements

We discuss in this section the relation between re
nements and exceptions� Our partic�
ular execution model	 in which we specify features	 treats exceptions as data objects�
In this way	 we can abstract over exceptions similar to other abstractions� Hence we
can accomodate the abstraction over the occurrence of exceptions as a re
nement�
This is similar to the usual notion of partial correctness	 which states that a particular
property holds if the program terminates� We develop this idea below and show that
it provides for a gentle approach to behavioral subtyping� With this re
nement it is
possible to handle many practical cases in a simple way�
We 
rst discuss the typical example of the stack with under�ow handling	 followed

by stacks with a �modi
ed� bound feature� In the former	 only the pop operation may
raise an exception for an empty stack� Hence we can show behavioral re
nement	 as

pushER��� self x� popER��� self � unitER���

holds	 if it holds for �� Thus adding exceptions poses no problem for behavioral re
ne�
ment	 if only extra behavior is added� Recall that the stack under�ow was underspec�
i
ed so far�
To accommodate exceptions for the bounded stack	 we modify the interaction speci�


cation as shown below� Alternatively	 we can lift the bound feature to ER and rede
ne
check�bound to raise an error�

Feature BF implements Bound uses ER state b �� Int

check�bound x � ����

��� Stack Interaction

push self a � ifseq �check�bound a� then raise�error else �push self a�
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We can now show conditional re
nement for the following equation�

push selfBF ��� x� pop selfBF ��� � unit

� check�bound x �� True

Interestingly	 the following holds without condition�

push selfBF ��� x� top selfBF ��� � push selfBF ��� x� result x

The point is that in case push triggers an exception	 both sides yield the same state
and an error condition� This shows that exceptions are an interesting alternative to
conditional re
nements� We can however go a step further and develop a notion of
weak behavioral re
nement for exceptions such that the above equation holds without
condition� The idea of this extension is to use restricted equalities to specify exception
behavior� For instance	 for the bounded stack	 this yields the following re
nement�

push selfBF ��� x� pop selfBF ��� ��ER unitBF ���

We view this as more abstract than conditional re
nement	 since the condition
is unspeci
ed� Furthermore	 we can reason that upon a successful computation	 the
desired equations do hold� With conditional re
nement	 we cannot conclude anything
about a successful computation� Thus exceptions provide for a useful and operational
check of conditional re
nement� In some cases	 we have to be a bit more careful� If an
operation locally checks for exceptions	 we must explicitly reason about exceptions� In
our setting	 we can assure that this does not happen by assuming that the code does
not use the error handler feature EH�
This re
nement notion is similar to partial correctness	 which states that a property

of a program holds if it terminates� With exceptions	 the property holds if the program
terminates without raising an exception�
Note that our interpretation of exceptions is easily possible with monads	 since

exceptions are modeled via a data type� Hence we need little additional speci
cation
techniques and can in particular abstract over exceptions similar to other data values�
On the other hand	 exceptions delay the burden of showing that a program ter�

minates successfully	 if this is required� At some point	 we usually have to show the
condition� However	 in most cases the formalization via exceptions is more convenient�
Consider again the small stack	 which can only hold a 
xed	 small number of elements�
Then	 when passing such a stack object to a procedure	 we must assume that the pro�
cedure does not insert too many elements� This is di�cult to formalize and our partial
result is appropriate if the details of the procedure are not under consideration�
Note that in our approach	 we distinguish exceptions from other reasons for par�

tiality	 such as non�termination� This last point is an advantage over other techniques
which use partial functions to model conditional re
nement �St"���� Furthermore	 our
model of exceptions can be used in a �exible add�on fashion and is compatible with
current programming languages�
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Finally	 note that there are cases where methods of inner features are disabled	 but
raising an exception is inappropriate in this case� Recall the lock feature	 which disables
operations if the object is locked� In this case	 an exception should not be raised if a
disabled operations is invoked� Hence we need to use conditional re
nement and need
to assure the invariant that the object is not locked� From this we can conclude a
subtype relation�

��� Comparison to Object�Oriented Type Systems

In the following	 we discuss how our model for typing features relates to approaches
for typing object�oriented languages� We claim that our model	 which is inspired by
the type systems of functional languages �Jon��	 NP���	 is a simple but expressive
approach� We contribute in the next chapter an embedding of our typing techniques
into the language Gofer �Jon���	 for which formal typing rules and decidable type
inference exist� For an object model	 a formal description of the state access via object
identi
ers requires dependent types �Bar���	 as the type of the object depends on the
object identi
er� For a 
xed number of features	 it is however possible to model this
in the Gofer type system with relations between types �see Section �����
There exists an abundance of type systems for object�oriented languages	 for in�

stance see �AC��	 PT��	 Cas��	 BCC����� Although we do not aim for a detailed
comparison to other object�oriented type systems	 which are in most cases quite com�
plex	 we show the main di�erences here�
Most of these approaches model classes with �mutable or non�mutable� variables and

methods	 as well as subtyping between classes� Furthermore	 explicit data structures
are mostly used to represent objects� With our abstract model of state	 we can avoid
explicit data structures for objects	 e�g� records�
Apart from this	 the main di�erences concern the technical treatment of the in�

herent typing problems of object�oriented language in conjunction with other known
extensions� We summarize some of them below�

�� Formal notions of classes and objects� In our case	 we have no notion of a class	
only concrete objects are created� Features are similar to classes	 but objects are
created from a set of features and not from a single class�

� The subtyping relation� This relation is usually generated by the subclass rela�
tion	 although there are exceptions in so�called object�based languages �see �AC���
for a comprehensive treatment�� Here	 we use the subset relation on features	 as
discussed in more detail below�

�� Co� or contravariant changes of types of methods under subclassing wrt the sub�
type relation� As an example	 assume a method f of a class A which takes a
parameter of type B� When rede
ning f for a subclass A� of A	 the concept of
covariance allows to specialize the type of the parameter to subclass�type B� of
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B� This entails that fA� b with b of type B is not permitted	 b must be of type B��
The purpose of covariance is to specialize the type of a method in a subclass as
done here via self types� This however con�icts with type soundness of the type
system in many cases �Cas���� More precisely	 an unrestricted usage of covari�
ance may result in �noticed or unnoticed� dynamic type con�icts� Semantically
sound	 but rarely useful	 is contravariance	 which permits that B� is a supertype
of B� There exist several approaches which circumvent these problems with co�
variance �BPF��	 BSG���	 which we follow here by using so�called self types� A
similar type system for object�oriented languages is the one developed in �OW���
for the language Pizza as used in Chapter ��

�� Parametric classes and subtype polymorphism are often included and intermin�
gled� As we use instantiation of type variables for �restricted� subtype polymor�
phism �see below�	 there is no interaction with parametric polymorphism in the
form of type variables�

The second item of the above is instructive for the comparison of subclasses and
features� In object�oriented languages	 one creates a 
xed hierarchy of classes which
induces a transitive subtype relation� For instance	 assume ColoredPointClass is a
subclass of PointClass� Since class names are used as types in most languages and
since subclasses generate subtypes	 an object of type ColoredPointClass can be used
wherever an object of type PointClass can be used�
In our setting	 we model this via two features	 Color and Point� An object with

both feature then supports a set of interfaces	 here �Color� Point�� Subtyping is
simply modeled as set inclusion� Each feature interface corresponds to the notion of a
protocol in �AC����
The next interesting issue is how we model subtype polymorphism� In usual object

oriented systems	 we can write a function

draw �� PointClass� ����

This function takes an object of type PointClass as parameter� Due to subtyping	
we can also pass objects of type ColoredPointClass to draw� In our setting	 we use
polymorphism to model this� The function draw has the following polymorphic type
in our setting�

draw �� oid���Point � ����

Hence we use �apart from an explicit type of object identi
ers� a polymorphic type
with the type variable �� This variable can be instantiated by any type which imple�
ments	 among others	 the feature interface Point� This well known technique is also
used in �OW���� In our approach it is also possible to specify a particular feature
combination �without admitting subtypes� by giving a concrete object type� This is
sometimes useful	 but is not possible in most object�oriented languages which generally
admit subtypes�
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Below the interface level	 we use a layer model to compose features via feature
constructors� For instance	 if Fi is the constructor for feature i	 we can compose
three features via F��F��F���� These types ful
ll two purposes simultaneously� they
determine the type of an object �i�e� the features it provides� and also model the state
of an object directly� This close link allows for generic access to the state of an object
which is convenient for speci
cations� Furthermore	 types are used for abstraction
functions which are needed for re
nement results� Using these	 we easily establish
results comparable to �DL��	 LW���� We argue that this simple form of abstractions
is both practical and su�cient for our setting�
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Chapter �

Monadic Feature�Oriented

Programming

In this chapter	 we model feature�oriented programming concepts in a functional lan�
guage� The constructions we use here are fully compatible with the last chapters and
give concrete models for the monads and monad operations used earlier� We show in
the following our feature composition architecture	 which originates from results for
monad compositions� While in this setting the origins of these techniques are visible	
the imperative implementation language presented in the next chapter avoids these
complications	 as implicit state	 exceptions and inheritance are available in the lan�
guage� In contrast to the often more readable imperative version	 we no not need any
language extension here�
As we embed the feature�oriented �and object�oriented� construction into the type

system of Gofer �Jon��� �which is somewhat extended over the one of Haskell �PHA�����	
we give a concrete typing model for object�oriented systems� This is indirectly used in
the following chapter	 as the language Pizza �OW���	 which we use there	 has a type
system which is similar in several respects�
An advantage of this embedding is the integration in a functional language� Hence

no language extension is needed and both programming styles can be used interchange�
ably� Furthermore	 as functional programming allows one to write highly abstract pro�
grams	 this embedding also provides for a prototyping language for executable speci
ca�
tions� The disadvantage is that the type system has some rough edges and furthermore
the current implementation is slow	 since the imperative part is largely interpreted� Re�
garding the former problem	 a simple and safe modi
cation of the type system would
su�ce	 since it is in principle su�cient�
In this chapter	 the main technical contributions towards feature�oriented program�

ming are as follows�

� Using concepts for monad composition	 we introduce a novel model for program�
ming features in a modular and composable way which generalizes inheritance or
subclassing�
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� We show that some functionality �an undo function� which depends on several
features can be implemented abstractly for any feature combination using type
computations via type classes�

� We generalize some programming techniques used in �LHJ��� to generic classes
of stateful and error monads�

In contrast to the last two chapters on speci
cation	 we also include exceptions for the
single object case� Since this requires more elaborate typing and monad concepts	 this
was not shown earlier for simplicity� The exception model for the single object here
is di�erent from the global store with exceptions	 since an exception feature can be
added like any other feature�
We demonstrate our concepts by two examples	 the stack example and a small

example using telecommunication features	 where feature interactions have attracted
great attention �Zav��	 CO���� More examples can be found in the next chapter�
For implementing our concepts with monads we generalize techniques which were

developed in �LHJ���� In our model	 classes correspond to monads	 which can be
viewed as particular abstract data types� The interesting point is that �some classes
of� monads compose nicely and that we can build monad transformers	 which transform
an abstract data type to another� This is used to add features to objects� For instance	
the mainly used monad transformers add �local� state �and extra functionality�	 from
which we draw the comparison to inheritance� We show that implicit state via monads
is essential for our abstract programming techniques� Similarly	 overloading via type
classes is important	 as the type of polymorphic functions in feature implementations
can only be determined after an object is composed from a set of features�
To compare this work with earlier results on monads	 note that Moggi �Mog���

aimed at lifting monads just by their types� This was extended to liftings for par�
ticular types of monads in �LHJ���	 using their speci
c properties� Our technique is
to name concrete instances of monad classes �e�g� state monads� and to program lift�
ings depending on the names	 but using generic liftings for the class of monads� As
the names are identi
ed with features	 this clearly goes along the ideas of inheritance�
Furthermore	 we mostly use just state monads	 which compose easily�
We use the type system of the language Gofer in the following� This has the

advantage that we can build on top of an existing	 widely used language� Although
Gofer type classes fully su�ce for the single object case	 there are some insu�ciencies
in the case of object networks� As mentioned in Section ���	 some features cannot be
made polymorphic	 as the Gofer type class system requires all type variables in the
parameters of a class to appear in the type declarations of member functions�
This chapter is structured as follows� After a brief introduction to the Gofer type

system and monads in Section ��	 we show the concepts of stateful features in Sec�
tion ��� and of error features in Section ���� The problems of multi�feature interaction
for generic features are discussed in Section ���	 followed by examples for stack fea�
tures in Section ���� Another example for feature interactions in telecommunications
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is presented in Section ���� In Section ���	 we present a functional model of the object
model of the last chapter�

��� Programming Monadic Features

To give a 
rst idea of how to program features with monads	 we show �some of� the
code for the stack and the counter features� Our concepts are provided by executable
Gofer functions �Jon��� and type constructions� We use the constructor classes of
Gofer �Jon���	 which extend Haskell#s type classes �NP��� and have been partly adopted
in Haskell ��� �PHA�����
We use monadic state transformers for modeling implicit state as in imperative

languages	 which is essential for the desired �exibility and modularity� Composing
features is done by the type system of Gofer with type constructions and type classes�
A type class declares certain functions for its member types� Since types can be in
several classes	 we can use Gofer type classes for modeling features� Observe that type
classes do not correspond to classes in object�oriented programming	 but determine if
a type has some feature� Thus a type can be in several type classes	 which resemble
the idea of interfaces	 as e�g� in Java �GJS����
Note that there are some syntactic and typing di�erences to the treatment in the

last chapter� Therefore	 we do not use the same names for the example interfaces and
feature constructors names�

� Operation sequences are denoted via do�op� ��� �op��

� Instead of the keywords interface and feature etc	 we use the notation for Gofer
type classes� A feature interface is declared as a type class	 feature implementa�
tions as instance declarations for type classes�

� A type is in a type class �e�g� StackMonad or CountMonad� if the corresponding
functions are provided in an instance declaration	 as shown below�

� We use the type constructors StackT� CountT to add features to a type� For
instance	 if m is the type of an object �a monad�	 then StackT s m is a new type
which also supports the stack feature with a local state of type s� �In the earlier
chapters	 the names SF and CF were used for this purpose� The di�erence is
that here the constructors also have a parameter indicating the state used by the
feature��

� As we use overloading provided by Gofer	 we do not annotate functions with type
subscripts� For object networks in Section ���	 an extra function parameter is
used to facilitate overloading�
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In the following code	 the 
rst type declaration for StackT declares that StackT is a
state transformer	 adding implicit state to the object of typem�� The second statement
declares that StackT �Int� m is in the class StackMonad of stacks of integers�� The
type declaration and the instance correspond to feature constructors in the earlier
chapters� Furthermore	 we have to give implementations for the functions which the
feature provides	 here push and pop� Recall that we write types	 type constructors and
type declarations in italics� As in the last chapters	 we use monadic types� First	 we
have to declare the interface of the stack feature�

class Monad m �� StackMonad m where

push �� Int � m ��
pop �� m Int

is�empty �� m Bool

The following is a slightly simpli
ed version of the constructor declaration�

�� add implicit state of type s to m �simplified here�

type StackT s m � StateTrans s m

instance StackMonad �StackT �Int� m� where

push a � dof s � get� put �a�s� g
pop � dof s � get� put �tail s�� result �head s�g
is�empty � dof s � get� result �s����� g

In the above implementation	 the do�notation for sequential computations in mon�
ads is used� Each statement in the do construct may compute a value and assign it to
a local variable	 e�g� s � get assigns the result of get to s� In such a monad compu�
tation the added	 implicit state can be modi
ed via the functions put and get� Note
that these access functions always refer to the implicit state of the �current� feature�
Next we show the counter feature	 whose functions are also implemented via state

transformers�

class Monad m �� CountMonad m where

size �� m Int

inc �� m ��
dec �� m ��

type CountT Int m � StateTrans Int m

instance CountMonad �CountT Int m� where

�State transformers will be explained in detail later� Also� the following type declaration is short�
ened� The full code and the class declarations are shown later�

�Polymorphic stacks are possible via a binary class StackMonad� using the extra argument for the
type of the stack� However� this leads to ambiguous types later�
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size � get

inc � dof i � get� put �i
�� g
dec � dof i � get� put �i��� g

It remains to lift the functionality of stack to the context of a counter� In contrast
to the last sections	 we need an explicit instance declarations for this� The following
instance declaration states that �CountT Int m� has the stack feature	 under the
preconditions �stated before the ��� that m has the stack feature	 i�e� StackMonad m	
and that �CountT Int m� is a CountMonad�

instance �StackMonad m� CountMonad �CountT Int m�� ��

StackMonad �CountT Int m� where

push a � dof inc� lift �push a�g
pop � dof dec� lift popg

The code for push 
rst increments the counter and then via lift �push a� the
push function of the inner object ��superclass�� of type m� Roughly speaking	 lift
corresponds to the function super as e�g� in Java and is	 like get and put	 de
ned later�
Alternatively	 if there is no interaction	 one would just write

pop � lift pop

which could also be made a default �as implicit in object�oriented programming�� With
the above code	 an object of type

CountT Int �StackT �Int� m�

provides both features and behaves as expected� In general	 liftings should preserve the
functionality of the lifted features	 i�e� an individual feature always behaves identically
�if no others are used in between�� For the standard lifting	 this can be shown similar
to �LHJ����
The implementation of the undo feature is more involved and is presented in Sec�

tion ���� The idea of the simple undo implementation is to save the local state of the
object each time a function of the other features is applied �e�g� push	 pop�� The undo
feature raises several new issues�

� The lifting of functions of the other used features is schematic� Always save the
state 
rst and then call the function to be lifted� In contrast to object�oriented
programming	 this can be done once and for all by a particular function

lift�undo f � dof local�s � lift gets �

put �Some local�s� �

�lift f� g

which lifts any function f to the undo feature� Note that lift gets refers to the
state of the inner object�
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� Undo depends essentially on all �inner� features	 since it has to know the internal
state of the composed object� Since we work in a typed environment	 the type of
the state to be saved has to be known� This multi�feature interaction is solved
by an extra feature	 which allows one to read and write the local state�

��� Monads� Type Classes and Features

In the following	 we explain the technical background needed for implementing the fea�
ture model in a functional language� Some of the material is repeated from Chapter �	
but with an emphasis on typing and other language issues�
The concept of monads has been introduced to programming for modeling state

in functional languages �JW��� and for writing code which is easy to modify �Wad����
Both aspects will be essential in our context� The techniques presented here are based
on investigations on features in programming languages �LHJ����

	���� Type Classes

A type class in Haskell is essentially a set of types �which all happen to provide a
certain set of functions�� Each class declaration introduces a new class and a set of
new function names	 which are overloaded for each member of a class� For instance

class Eq a where

eq �� a � a � Bool

introduces the class Eq of all those types a which provide a function eq �� a � a �
Bool� A class declaration is like a module interface� it separates declarations from
implementations� Instance declarations determine the members of classes and give
concrete implementations for the member functions	 e�g�

instance Eq Int where

eq � eq�int

In general we can instantiate classes not just by base types but also by type terms�
For example	 we may wish to express that a type �a� admits equality provided a does�
This is achieved by the following instance declaration	 where the Haskell notation ��

adds a list of type assumptions �here Eq a� to the new instance Eq �a��

instance Eq a �� Eq �a� where
eq �� �� � True

eq �a�as� �b�bs� � and �eq a b� eq as bs�

Note that the last two eq expressions refer to two di�erent instances of Eq	 one for a
and one for �a��
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	���� Constructor Type Classes

The extension to constructor classes of Gofer �Jon��	 PHA���� allows n�ary type
classes� Furthermore	 these arguments may not just be types	 but can be type con�
structors� Constructor classes are often used when standard type classes are too coarse
to describe the types of the member functions� The standard example is the binary
container class	 whose instances typically are lists and trees�

class Container c a where

member �� a � �c a� � Bool

Here we can express that the type c a depends on a� If c a is replaced by a type s	
in a class Container� s	 then the type of member �� a � s � Bool would be too
general� we cannot write a sensible function which for any type a checks membership
in a type s� Typical instance declarations are�

instance Container List a where

member e �� � False

member e a�s � or �eq e a� member e s�

data Tree a � Leaf a � Node �Tree a � �Tree a �

instance Container Tree a where

member e �Leaf a� � eq e a

member e �Node a b� � or �member e a� member e b�

	���� Monads

Programming with monads provides a compromise between imperative languages	
where statements a�ect an implicit	 global state	 and stateless functional languages	
where all information �ow is � sometimes tediously � explicit� Monads also separate
building computation �e�g� composing state transformers� and running a computation�
A monad is a type constructor m with some operations and laws� If a is a type	

then m a is the type of a larger object which �wraps� a	 often a function type �e�g� a
state transformer� as shown later� In monadic style	 a function from a to b is assigned
the type a� m b� There are standard functions to work with monads	 de
ned in the
type class for monads	 which builds upon the functor class�

class Functor m where

map �� �a � b� � �m a � m b�

class Functor m �� Monad m where

result �� a � m a

bind �� m a � �a � m b� � m b
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Function result inserts a value into the �empty� monad and bind applies a monadic
function to a value of type m a� Below we use monad transformers to construct new
monads� A simple example for a state monad can be found in Section ��� for the
constructur St�
Note that we use the do�notation for bind	 de
ned as

do f x � m � tg �def m bind �x�t

This notation extends canonically to sequences of bind applications� For the monad
laws we refer to Section ��� Note further that unit � result �� is not used here�

	���� Features� Monads with Operations

Features are de
ned as monads with additional operations� These can be viewed as
predicates over types which characterize the features� For instance	 for the basic stack
and counter features we de
ne�

class Monad m �� StackMonad m where

push �� Int � m ��
pop �� m Int

is�empty �� m Bool

This declares the two classes used in the introduction	 StackMonad and CountMonad	
with their corresponding functions� It assumes that m is a monad� �Note that �� is the
empty type��

��� A Class of Stateful Monads

We show in the following the underlying machinery for features which add state to
some object� The basis of state monads is a type

type StateTrans s m a � s� m�s� a�

which extends any monad m to a type of a state transformer for a state of type s�
This transformer can be applied repeatedly	 since StateTrans s m is again a monad	
as shown below� For the following general model	 we generalize over this type and just
assume the functions closeS and openS� These access the internal structure of state
monads and are only used internally�
The ternary class StateMonadT c s m	 where s is the type of the added state	 m a

monad and c an appropriate type constructor	 declares that �c s m� is a stateful monad
with the following functions �for some of which de
nitions are included��
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class Monad m �� StateMonadT c s m where

closeS �� �s � m�s� a�� � c s m a

openS �� c s m a � s � m�s� a�

get �� c s m s

get � closeS��s�result�s�s��

put �� s � c s m ��
put a � closeS��s�result�a�����

lift �� m a � c s m a

lift m � closeS��s� dofx � m� result�s �x�g�

For the functions get	 put and lift	 also de
nitions are provided in the class decla�
rations� The functions closeS and openS are used to show that any state monad is a
monad�

instance StateMonadT c s m �� Functor �c s m� where

map f xs � closeS ��s� �openS xs� s bind ��s��x�� result�s�� f x��

instance StateMonadT c s m �� Monad �c s m� where

result x � closeS��s�result�s�x��

m bind k � closeS��s	� �openS m� s	 bind ��s�� a�� openS �k a� s��

This generic class generalizes the various stateful monads in �LHJ���	 where the above
de
nition of monads is repeated for stateful monads�

	���� De�ning a Stateful Feature

With the above concepts	 we can show in detail the de
nition of basic stack features�
Only the following data type declaration is needed	 as well as declaring it to be a
stateful monad�

data StackT s m a � STM�StateTrans s m a�

instance StateMonadT StackT s m where

closeS x � STM x

openS �STM x� � x

Note that we use an extra constructor STM to de
ne StackT via a data type de
nition�
This wrapper is needed for type checking� otherwise StackT cannot be distinguished
from other state transformers with the same type�
Similar declarations are needed for the counter feature� The instance declarations

for StackT and CountT can be found in Section ����
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��� A Class of Error Monads

As for stateful monads	 we can similarly de
ne a generic monad which adds extra
values to the computation� These are used to model exceptions or errors� For instance	
with the above de
nition of stacks	 stack under�ow results in a program error� Using
error monads	 we can cope nicely with such cases� In applications it is then possible
to use stacks with or without error handling as needed�
We introduce error features similar to stateful features� They can hence be added

like any other stateful feature� Since this requires more complicated type constructions
than used in Chapter �	 this was only shown for a global object store in Chapter �� The
advantage here is that exceptions can be supplied more selectively to only particular
features in a feature combination�
Whereas stateful monads build upon a particular function type �StateTrans�	 we

use a sum type here�

data Err e a � Data a j Error e

type ErrT e m a � m�Err e a�

Thus ErrT adds error elements of type e to a monad m� Compared to ���	 we now
add a parameter for di�erent error cases� Note that this composes with state monads�
For instance	 we obtain the type

�ErrT e �StackT s Id�� a � STM� s � Id�s� Err e a��

The class of error monads supports open and close functions as for state monads	 plus
generic functions to inject and check errors �put�err� read�err�	 and the canonic
lifting function lifterr��

class Monad m �� ErrMonadT c s m where

openE �� c s m a � m�Err s a�
closeE �� m�Err s a� � c s m a

put�err �� s � c s m a

read�err �� c s m a � c s m Bool

lifterr �� m a � c s m a

lifterr c � closeE �map Data c�

put�err s � closeE�result�Error s��

read�err m � closeE�map isError �openE m�� where

isError �Error s� � Data True

isError �Data x� � Data False

�Due to the type system� the function cannot be overloaded to work under the same name as in
stateful monads� Adding an extra class for monad transformer is no solution� as typing does not
permit to declare instances for both classes of monads�
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Showing that ErrMonadT c s m is a monad is more complicated� It can for instance be
shown if we assume that m is a StateMonad� For this we use the concepts of �JD���	
which can be generalized to classes of monad transformers�
For instance	 an error handler for stack under�ow is written by lifting stack over

Err	 using Int for error values� Since we only use the base functions of ErrMonadT	 we
do not need to introduce an extra class and a type constructor for this� �An example
with an explicit class is shown in Section ������

instance �StackMonad m� ErrMonadT ErrT Er m���

StackMonad �ErrT Er m� where

pop � dof b � is�empty �

if b then �put�err 	�

else �lifterr pop�g
push a � lifterr �push a�

is�empty � lifterr is�empty

Lifting other	 independent features is canonical�

instance �CountMonad m� ErrMonadT ErrT s m� ��

CountMonad �ErrT s m� where

size � lifterr size

inc � lifterr inc

dec � lifterr dec

This lifting can even be generalized to any state monad	 if CountMonad is independent
of all other stateful features�
In the current model for features	 we have just provided generic monad composition

for a set of stateful features with one error feature� Although it is possible to use several
error features	 it is easier to use one error monad transformer and to build other features
on top of it� For instance	 we only use the integer � as error message here and leave
others open for other error cases� �In case several features use the same error message	
we can treat this as an interaction��

��� The Undo Feature� Multi�Feature Interaction

We continue the stack example by introducing the undo feature	 which has interesting
interactions with several other features� The problem is that the undo feature must
access the local states of all �stateful� features the object already has� Since we work
in a typed setting	 we also need the type of all local states� Hence undo depends on
several features� Recall that we have shown a highly generic speci
cation for undo in
Section ���� On the programming level	 this corresponds to multi�feature interaction	
as the generic state access is not directly available� However	 the solution is similar to
the speci
cation in Section ��� and it is easy to see that the implementation ful
lls the
speci
cation of Section ����
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As we work with standardized monads	 it is possible to add an auxiliary feature	�

which determines the state of an object and provides access to it� Thus undo can be
added to any feature combination�
The additional class SMonad for stateful monads is declared via

class Monad m �� SMonad s m where

gets �� m s

puts �� s � m s

This binary class declares that monad m has state s and provides access functions�
Instances can be de
ned schematically for both classes of monads	 e�g��

instance �SMonad s� m� StateMonadT c s m� ��

SMonad �s� s�� �c s m� where

gets � dofs � lift gets� s� � get� result �s��s� g
puts �a�b� � dofs � lift �puts b��put a g

This expresses that c s m has state �s� s��	 if m has state s�� Now we can de
ne the
undo feature via SMonad as follows� Since there may be no saved state for undo	 we
use the data type Option for the copy of the local state in the following code�

data Option a � Some a j None

data UndoT s m a � UTM�StateTrans s m a�

instance StateMonadT UndoT s m where

closeS x � UTM x

openS �UTM x� � x

class Monad m �� UndoMonad m where

undo �� m ��

instance SMonad s m �� UndoMonad �UndoT �Option s� m� where

undo � dof u � get � case u of

None �� result ��

Some u� �� lift �puts u��g

The other interesting point about undo is the lifting of functions of other features� The
advantage is that lifting proceeds via the following generic scheme	 which 
rst extracts
the local state of the object	 updates the saved state and then calls the lifted function�

liftundo f � doflocal�s � lift gets �

put �Some local�s� �

�lift f� g

�Not shown in Figure ��	�
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Lifting for the basic stack features proceeds canonically�

instance �SMonad s� m� StackMonad m � ��

StackMonad �UndoT �Option s�� m� where

push a � liftundo �push a�

pop � liftundo pop

There is an interesting interaction when the counter is used� For lifting size	 which
does not a�ect the state	 we can either overwrite the saved state or leave it unchanged
�as shown in the comment in the code below�� In the former case	 undo after size
will have no e�ect� With our model of feature interaction	 we just have to use the
appropriate lifting function for interaction resolution�

instance �SMonad s m� CountMonad m � ��

CountMonad �UndoT �Option s� m� where

size � liftundo size

�� alternative� � lift size

inc � liftundo inc

dec � liftundo dec

Currently	 just one lifting between two features is possible due to the type system�
Whereas the store feature is be used here to model the generic state access functions

on the programming level	 it is also possible to implement the functions individually
for each feature� This yields a customized version of state access� For instance	 this
can be used to specify and to implement a more �exible	 but still generic undo feature�

��� Using the Stack Features

A simple example for an object �monad� with two features is the following	 which
uses the identity monad Id with no features as base monad� By the following type
declarations features are selected�	 Running the above state transformers requires
extra machinery for injecting an initial state and for extracting the computed value�

type St � Int �� Type for StackT

type Ct � Int �� Type for CountT

�� stack with counter

test� �� �CountT Ct �StackT �St� Id�� St
test� � dof

push � �

push � �

�Gofer can infer the types without these declarations� but the inferred type is too general� as Gofer
allows several 
base� implementations for a type class�
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size g �� computes �

�� stack with undo

test� �� �UndoT �Option ��St�� ���� �StackT �St� Id�� �St�
test� � dof

push � �

push � �

push � �

undo �

p� � pop �

undo �

p� � pop �

result �p��p��g �� computes ��� ��

�� stack with counter 
 undo

test� �� �UndoT �Option �Ct� ��St�� ������CountT Ct �StackT �St� Id��� �St�
test� � dof

push � �

push � �

push � �

undo �

p� � pop �

s � size �

p� � pop �

result �p��p��s�g
�� computes ��� �� ��

�� counter with undo

test� �� �UndoT �Option �Ct� ���� �CountT Ct Id�� St
test� � dof

inc�

inc�

undo�

size g �� computes �

��	 Feature Interaction in Telecommunications

In the area of telecommunications	 feature interaction problems have led to a new
research branch �Zav��	 CO��� focusing on such interaction problems which hinder
the rapid creation of new services� The problem in feature interaction stems from
the abundance of features telephones �will� have� For instance	 consider the following
con�ict occurring in telephone connections� B forwards calls to his phone to C� C
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screens calls from A �ICS	 incoming call screening�� Should a call from A to B be
connected to C� In this example	 there is a clear interaction between forwarding �FD�
and ICS	 which can be resolved in several ways� For many other examples we refer
to �CGN�����
We demonstrate our techniques	 including an example for virtual functions	 with

the following set of features for this domain of connecting calls�

� ICS �incoming call screening�

� Forwarding of calls

� Error handling for busy phones �also used for disallowed calls�

The 
rst two of these features add local state	 i�e� the origin of the call	 which is not
needed for the other features�
In this application	 there are similar feature interactions as in the last section� The

interactions mostly stem from extending the environment or from resource con�icts�
The 
rst can be handled by liftings	 the second by the order on features�
Our full implementation contains another feature	 called OCS �outgoing call screen�

ing�	 which is similar to ICS� Already with four features and several resolutions to the
interactions	 there are many di�erent feature combinations�

	���� Forwarding

The goal in the following is to provide functionality for connecting calls�

�� type for phone numbers

type Dn � Int

class PMonad m �� FWDMonad m where

forward �� Dn � m Dn

Forwarding only uses two �constant� lookup functions fd�check and fd with forwarding
information and adds no local state� For simplicity	 we use a state transformer which
adds no state�

data FwdT s m a � FTM �StateTrans �� m a�

instance StateMonadT FwdT �� m where

closeS x � FTM x

openS �FTM x� � x

instance FWDMonad �FwdT �� m� where

forward nr � if �fd�check nr� then result �fd nr�

else result nr

���



	���� The Busy Monad

The Busy monad provides a function for raising a busy signal and is based on the error
monad�

class Monad m �� PMonad m where

raise�busy �� m a

type PhoneT � ErrT ��

instance ErrMonadT ErrT �� m �� PMonad �PhoneT m� where

raise�busy � put�err ��

	���� Incoming Call Screening

For ICS we use a state monad with the origin of the call as local state�

data IcsT m a � ITM �StateTrans Dn m a�

instance StateMonadT IcsT Dn m where

closeS x � ITM x

openS �ITM x� � x

class IcsMonad m where

check�ics �� Dn � m Dn

The corresponding implementation uses a function check�ics�	 which is not shown
here� It simply checks disallowed callers�

instance IcsMonad �IcsT Dn m� where

check�ics dest � dof orig � get�

if �check�ics� orig dest�

then result dest

else raise�busy g

This code raises an exception in case the call is disallowed	 which in turn is the signal
for busy�

	���� Resolving the ICSForward�Interaction

To resolve the interaction between forwarding and ICS	 we lift the forward function to
ICS� If we choose the standard lifting by

instance �FWDMonad m� StateMonadT IcsT a m� ��

FWDMonad �IcsT a m� where

forward a � lift �forward a�
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then the local state added by ICS is not a�ected by forwarding� Hence	 the ICS check
uses the origin of the call� If the intermediate hop is to be used	 we would write

forward a � dofput a� lift �forward a�g

instead� Note that get and put refer to the ICS feature here� Again	 lifting allows a
modular resolution of the interaction between two features�

��� A Functional Object Model

In this section	 we present a concrete functional model of the concepts presented in
Chapter �� In contrast to the case of one object with mutable state	 we model here a
supply of mutable objects�
The presentation is in the lines of Section ���� We show concrete implementations of

the monad constructions used in Section ���� Furthermore	 it is interesting to compare
this version to the previous one with one monadic object� Whereas in Section ��� the
used state is individually determined via the feature constructors	 we must assume a
single global object store� Similarly	 exceptions are modeled globally� In this sense	
the monad constructions are in fact simpler that the ones presented in Section ����
However	 the encoding of objects and types is more involved� For the understanding
of features and for reasoning about features	 the simple case in Sections ��� and ��� is
more instructive�
In general	 the model presented in Chapter � requires dependent types� Using

the techniques of explicit type markings and type relations	 we are able to implement
an object model for a 
xed set of features� Observe that the abstract mathematical
description uses dependent types� the object store maps an object identi
er and an
object type to an object of this type� For a 
xed number of features	 we can model
the global object store as a mapping from an object identi
er and a feature identi
er
to the state of the feature for this object�
In this way	 we show type inference by an embedding into the Gofer type system�

However	 the Gofer type system is at some points unnecessarily restrictive for our
applications� �In case of a type class with several parameters	 every function de
ned
in this class must use all parameters in its type� This is not needed if the actual
overloading can still be resolved�� As a consequence	 the embedding is possible	 but
quite delicate at some points�

	���� Features on a Global Object Store

We show in the following the main constructions needed for features on an object store�
The global store is a state monad whose implicit state is a mapping from an object
index and a feature to the value of the feature for this object� Note that the store class
is just an auxiliary construction� only the function new is used in feature de
nitions�
State access for features and objects is shown below�

���



type Index � Int �� Object number

type FIndex � Int �� Feature number

class Monad m �� Store m where

rd �� Index � FIndex � m V alue

set �� Index � FIndex � V alue � m ��
new �� o � m �o� Index�

The following simple implementation uses a function for the object store and a variable
indicating the number of used objects� As explained in Section �����	 we need a wrapper
S for the following type St�

type Ostates � �Index� FIndex � FV alues�

data St a � S� Ostates � �Ostates� a��
unS �S a� � a

instance Store St where

rd o i � S���max� atribs�� ��max� atribs�� atribs o i��

set o i a � S���max� atribs��

��max� �o� i�� if �o��o�� and �i��i��

then a else atribs o� i��� �� ��

new obj � S� ��max� a�� ��max
�� a�� �obj� max
��� �

instance Functor St where

map f �S a� � S ��s� let �s�� sa� � a s in �s�� f sa� �

instance Monad St where

result a � S��p� �p�a��

m �bind� f � S��p� let �p��a� � unS m p

in unS �f a� p��

Next we show the encoding of objects� An object consists of an index in the global store
plus some type information� Similar to the single�object case	 we represent the object
type via nested feature constructors� These are modeled as data type constructors� An
object is modeled as a pair of a term with a data type constructor and an index in the
global store�

class Object o where

idx �� o � Index

instance Object �o� Int� where

idx �o�n� � n
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�������������� Feature constructors

data SF a � Sf a

data CF a � Cf a

data FD a � Fd a �� homogeneous lists

For instance	 concrete objects are �Sf��� ��	 �Cf�Sf���� �� and �Lf�Sf���� ��	
assuming SF	 CF and FD are declared as feature� This is explained next�
The central Gofer class in our encoding is the class Feature m a type f o below

which declares a type constructor f as a feature with the appropriate state access
functionality� Together with the function new of the store feature	 this provides for the
functionality of the constructors SR�SW �SC�� of Section ���� As we do not aim for
speci
cations here	 we do not split the object access functions into three features �like
in Section ���� for brevity�

class �Store m� Object o� Conv a type� �� Feature m a type f o where

get �� �f ax� o� � m a type

put �� �f ax� o� � a type � m ��
get �ax�o� � dofxs � rd �idx o� �fnum ax�� result �proj xs�g
put �ax�o� x � set �idx o� �fnum ax� �inj x�

call �o�n� f � f �o��o�n�� �� virtual call of f on �o�n�

self �a��o�n�� � �o�n� �� remove first parameter

�� �used for overloading�

The parameters in Feature m a type f o and the assumed type classes have to be
explained in detail� The 
rst one is the global monad store m� The type a type is the
type of the state variable associated with the feature� The class Conv a type provides
the functions proj and inj to store the value into the global store� The last parameter
is the object type of the full object �self type�� Furthermore	 all functions of features
have to be indexed by the feature �as done via subscripts in Chapter ��� For this
purpose	 we use a pair � f ax� o�	 where o is the type object �again a pair� and f ax

is subterm of the type of o� For instance	 we will implement pushSF oidCF �SF � in the
syntax of Chapter � as

push �Sf��Cf�Sf���� Id�� a � ���

Note that fnum determines the index of a feature�
Since we use an extra parameter to implement overloading	 calling virtual methods

requires an auxiliary function call to initialize this extra parameter	 as shown above�
Similarly	 the function self strips this parameter o��
As an example of the above class	 the feature constructor for the stack feature is

declared as follows	 where �Int� is the type of the used state�

instance Feature m �Int� SF oo
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Now we are ready to de
ne the actual features� For instance	 the counter is de
ned as
follows�

instance Feature m Int CF oo

class Store m �� Counter m ax o where

reset �� �ax� o� � m ��
inc �� �ax� o� � m ��
dec �� �ax� o� � m ��
val �� �ax� o� � m Int

instance Feature m Int CF o�� Counter m�CF id� y o where

reset o � put o 	

inc o � dof i � get o� put o �i
��g
dec o � dof i � get o� put o �i���g
val o � get o

The de
nition of the stack feature shows the de
nition of a virtual function push��

class Store m �� Stack m ax o where

empty �� �ax� o� � m ��
push �� �ax� o� � Int � m ��
pop �� �ax� o� � m Int

push� �� �ax� o� � Int � m ��

instance �Feature m �Int� SF �o� n�� Stack m o �o� n�� ��

Stack m �SF ax� �o� n� where

���

push� o a � dofcall �self o� push a � call �self o� push ag

Note that we need an auxiliary function call for virtual function calls�
The following example of linked lists shows the usage of binary functions	 as in

Section ����� We only sketch the following list feature here	 as more implementation
details can be found in Section ����� The state variable of this feature is of type
Option o	 where o is of the full object �self type�	 in order to model a possibly empty
link �None� to the next object of the linked list� This type is then used in the functions
next and get�next�

data Option a � Some a � None

instance Feature m �Option o� Fd o

class Store m �� Fd�link m ax o where

empty �� �ax� o� � m��
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is�empty �� �ax� o� � m�Bool�
next �� �ax� o� � m�o�
set�next �� �ax� o� � o � m ��
���

instance Feature m �Option o� Fd o �� Fd�link m �Fd ax� o where

����

A sample program using a linked list of objects with the counter feature is the following�

o � new �Cf �Fd ��� �

o� � new �Cf �Fd ����

o� � new �Fd ����

set�next o o� �

Note that replacing o� by o� in the above result in a type error�

	���� Exceptions on a Global Object Store

To add exceptions to a global object store	 we use the techniques of Section ���� The ob�
tained monad is the result of combining the above monad with the error monad as used
in Section ���� More precisely	 the constructor combination EH�ER�SR�SW �SC����
is implemented by the monad StE ��	 for which the corresponding feature functions
are de
ned below� Since we have to provide for exceptions on a global and not per
object basis	 there is only one global error monad� Hence we do not provide the error
handling as a pluggable feature of one object� Instead	 the features with exceptions
rely on an appropriate monad�
We proceed similar to the last section	 but use a di�erent base monad as follows�

As before	 we use a wrapper Se�

data Err a � Data a � Error

data StE a � Se� Ostates � �Ostates� Err a ��
unSe �Se a� � a �� Auxiliary functions for wrapper Se

isErr �Data a� � False

isErr Error � True

instance Store StE where

rd o i � Se���max� atribs�� ��max� atribs�� Data �atribs o i� ��

set o i a � Se���max� atribs��

��max� �o� i�� if and �o��o��i��i��

then a else atribs o� i��� Data �� ��

new obj � Se���max� a�� ��max
�� a�� Data �obj� max
��� �

���



instance Functor Err where

map f Error � Error

map f �Data x� � Data �f x�

instance Functor StE where

map f �Se a� � Se��s� let �s�� sa� � a s in �s�� map f sa� �

instance Monad StE where

result a � Se��p� �p�Data a��

m �bind� f � Se��p� let �p��a� � unSe m p in doErr f a p�� where

doErr f �Data a� pl � unSe �f a� pl

doErr f Error pl � �pl� Error�

The functions for raising and catching errors are declared in a class ErrMonad�

class Monad m �� ErrMonad m where

raise�err �� m a

read�err �� m a � m �Err a�

instance ErrMonad StEwhere

raise�err � Se��p �� �p�Error��

read�err m � Se��p �� let �p��a� � unSe m p in �p�� Data a��

In this setting	 it is now possible to de
ne a pluggable StackErr feature�

class �ErrMonad m� Store m� �� StackErr m ax o where

stack�err �� �ax� o� � m a

stack�err o � raise�err

instance Feature m �� SE o �� StackErr m �SE ax� o where

stack�err o � raise�err

The following type expressions for lifting stack over SE to Stack m o �o� n� require
explanation� The object type �o� n� must be stated in this form	 as o appears explicit
in �SE o�� �One cannot introduce di�erent type variables for �SE o� and �o� n�	 since
the instance declaration would be too general��

instance �Lifter SE� ErrMonad m� StackErr m �SE o� �o� n��

Stack m o �o� n� �

�� Stack m �SE o� �o�n� where

pop o � dof b � is�empty o� if b then stack�err o

else lift pop og
���

���



An example usage is the following code	 in which stack operations are protected in an
exception handler�

o � new �Cf sfb� �

empty o�

e � read�err� dofpop o� top og ��

result �if �isErr e� then �Error detected� else �Ok��

In this way	 the exception raised by pop is caught�

��



Chapter �

Imperative Feature�Oriented

Programming

In the following	 we present feature�oriented programming in an imperative setting� In
particular	 we show how an existing language	 namely Java �GJS���	 can be extended
to support feature�oriented programming� More advanced concepts are translated to
the language Pizza �OW���	 whose compiler in turn translates to Java�
Since some of the earlier concepts are simpli
ed and restricted for this integration	

this version of feature�oriented programming is easier to use� This gives an ideal im�
plementation platform for feature�oriented development� Furthermore	 it shows that
Java is easily extended to feature�oriented programming�
Apart from the integration aspect	 the other novel point here is that we give a

detailed comparison to common object�oriented programming techniques� The trans�
lation of our extension delineates the relation to inheritance and aggregation� This
also gives a detailed comparison between both	 which reveals a few subtle di�erences�
The semantics of our extensions can be de
ned via direct translation to plain Java	 as
shown below	 or via the functional model presented earlier�
The integration in existing languages like Java and Pizza requires a few modi
ca�

tions and simpli
cation of the earlier developed concepts�

� All functions are virtual and are furthermore inherited�lifted by default� �In
Gofer	 a function which is not lifted is not available for this subtype�feature
combination��

� The type expressions have to be compatible with Java and Pizza�

� The types permitted in feature assumptions in lifters are limited� For a simpli
ed
version of the general concepts	 extra constructs are added�

We present the basic notion of features in Java� for several extensions	 in the lines of
Chapters � and �	 we use Pizza� Note that there are strong relations between the type
and class concepts in the languages Gofer	 Java and Pizza	 as explained in �OW����
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We show that parameterized features �similar to templates� work nicely with inter�
actions and liftings� Compared to the speci
cations discussed earlier	 we have to be
more explicit about type declarations� As we will see	 there can also occur type depen�
dencies between two features	 which can be clearly speci
ed in our setting� Another
extension permits features which add exceptions and may raise exceptions for other
features via lifters� Hence checking exceptional cases is viewed as resolving an inter�
action� As liftings for some features are generic	 we model this case via higher�order
functions�
The main technical contributions and results in this chapter are as follows�

� Translations of a feature�based language extension of Java into Java	 one via
inheritance and one via aggregation and delegation�

� A programming language version of parameterized features and type dependen�
cies between features	 followed by a translation into Pizza �OW���	 an extension
of Java�

� The translations lead to a detailed comparison of aggregation and inheritance�
This unveils two cases where aggregation is more powerful than inheritance due
to typing problems�

In the following section	 we discuss the 
rst three features of the stack example� We
de
ne the feature�oriented extension of Java via translations in Section ��	 followed by
an extension to parameterized features in Section ���� This section also discusses the
remaining two features	 undo and bound� An extension to generic liftings via higher�
order functions is shown in Section ���� Section ��� discusses features which introduce
exceptions and raise exception in lifters�
Many examples from several areas are shown in Section ���	 starting with variations

of design patterns in Section ������ Section ���� models common software description
techniques using automata by features and analyzes interactions� An interesting appli�
cation area where feature interactions have been extensively examined are multimedia
and telecommunication systems	 as discussed in Section ������ This application area
actually triggered this research�

��� Examples of Feature�Oriented Programming

In this section	 we introduce imperative feature�oriented programming using the ex�
ample modeling variations of stacks� �The undo and bound features are shown later in
Section ����� For this purpose	 we present an extension of Java in the following�
We 
rst de
ne interfaces for features� Although not strictly needed for our ideas	

they are useful if there are several implementations for one interface� Furthermore	
they ease translation into Java	 as a class can implement several interfaces in Java�
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interface Stack �

void empty���

void push�char a��

void push��char a��

void pop���

char top���

�

interface Counter �

void reset���

void inc���

void dec���

int size���

�

interface Lock �

void lock���

void unlock���

�

The code below provides base implementations of the individual features� Note that
we only treat stacks over characters� parametric stacks will be considered later� The
notation feature SF de
nes a new feature named SF	 which implements stacks� Similar
to class names in Java	 SF is used as a new constructor for a feature� Using the other
two feature implementations	 CF and LF	

new LF �CF �SF��

creates an object with all three features� For interaction handling	 it is important that
features are composed in a particular order	 e�g� the above 
rst adds CF to SF and then
adds LF�

feature SF implements Stack �

String s � new String���

�� Use Java Strings

void empty�� �s � ��� �

void push�char a�

�s � String�valueOf�a��concat�s�� ��

void pop�� �s � s�substring���� � �

char top�� � return �s�charAt�	� �� � �

void push��char a�

�this�push�a� � this�push�a�� ��

�

feature CF implements Counter �

int i � 	�

void reset�� �i � 	� ��

���



void inc�� �i � i
�� ��

void dec�� �i � i��� ��

int size�� �return i� ��

�

feature LF implements Lock �

boolean l � true�

void lock�� �l � false���

void unlock�� �l � true���

boolean is�unlocked�� �return l���

�

In addition to the base implementations	 we need to provide lifters	 which replace
method overriding in subclasses� Such lifters are separate entities and always handle
two features at a time� In the following code	 features �via interfaces� are lifted over con�
crete feature implementations� For instance	 the code below feature CF lifts Stack

adapts the functions of Stack to the context of CF	 i�e� the counter has to be updated
accordingly� When composing features	 this lifter is used if CF is added to an object
�type� with a feature with interface Stack	 and not just directly to a stack implemen�
tation� This is important for �exible composition	 as shown below�

feature CF lifts Stack �

void empty�� �this�reset��� super�empty�����

void push�char a�

�this�inc��� super�push�a� ���

void pop�� � this�dec��� super�pop�� ���

�

feature LF lifts Stack �

void empty�� �if �this�is�unlocked���

�super�empty������

void push�char a� �if �this�is�unlocked���

�super�push�a�����

void pop�� � if �this�is�unlocked���

�super�pop������

int size�� � return super�size��� ��

char top�� � return super�top��� � �

�

feature LF lifts Counter �

void reset�� �if �this�is�unlocked���

�super�reset������

void inc�� �if �this�is�unlocked���

�super�inc������

void dec�� �if �this�is�unlocked���

�super�dec������

�
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Methods which are una�ected by interactions are not explicitly lifted	 e�g� top and
size� Note that the lifting to the lock feature is schematic� Hence it is tempting to
allow default lifters	 as discussed in Section ����
The modular speci
cation of the three features	 separated from their interactions	

allows for several object compositions�

� Stack with counter

� Stack with lock

� Stack with counter and lock

� Counter with lock

For all these combinations	 the three lifters shown above adapt the features appropri�
ately to the chosen combination� The resulting objects behave as desired� In addition	
we can of course use each feature individually �even lock�� With the remaining two
features	 bound and undo �shown later�	 many more combinations are possible in the
same way� Recall that the composition of lifters and features was shown in Figure ��
for an example with three features�
The composed object simply provides the functionality of all selected features to

the outside	 but for composition we need an additional ordering� In particular	 the
outermost feature is not lifted	 similar to the lowest class in a class hierarchy	 whose
functions are not overridden�
Although inheritance can be used for such feature combinations	 all needed com�

binations	 including feature interactions	 have to be assembled manually� In contrast	
we can �re�use features by simply selecting the desired ones when creating an object�
In the above example	 each feature can be run independently� In other examples it

is often needed to write a feature assuming that some other feature is available� For
this	 a feature declaration may require other features	 e�g� in the following example�

feature DisplayAdapter assumes AsciiAdapter �

void show�window����� � ��� �

��� �

Consequently	 an implementationmay use the operations of the feature AsciiPrintable
in order to produce output on a window system�
In general	 the base functionality of a new feature can rely on the functionality of

the required ones� This idea of assuming other features is a further di�erence to usual
abstract subclass concepts� �Note that the extended object can obviously have more
than just the required features��
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��� Translation to Java

To provide a precise de
nition of our Java extension	 we show two translations into
Java� The 
rst translation uses inheritance	 while the second uses aggregation with
delegation� Hence this also serves to compare the feature model with both of these
approaches and will highlight two cases where both di�er� The equivalence of the
two translations is easy to see and similar to the formal comparison of delegation �or
aggregation� and inheritance presented in �Ste����
We assume the following abstract program with

� Ii feature interfaces

� Ii�tki methods declared for interface Ii

� Fi corresponding features

� Fi�vardecls declaration of instance variables

� Fi�fki code for methods Ii�tki

� Fi�j lifter for Fj to Ii

� Fi�j�fkj code for lifting Ij�tkj

interface I� f
�� method declarations

I��t��
���
I��tk� �

g
���

interface Im f
Im�t��
���
Im�tkm �

g
feature F� implements I� assumes I l�� � � � � � I

ln
� f

F��vardecls �� variable declarations

I��t� F��f�� �� method implementations
���
I��tk� F��fk��

g
���

���



�� lifters

feature Fi lifts Ij f
Ij�t� Fi�j�f�� �� function redefinitions
���
Ij�tkj Fi�j�fkj �

g

We use this schematic program to translate concrete object creations into Java in two
ways	 inheritance and aggregation� For the translations	 the feature interfaces are
preserved	 while the feature code is merged into concrete classes	 as shown below�
For sake of presentation	 the translation is simpli
ed in order to make the obtained

code as explicit as possible� Therefore	 we assume the following�

�� The names of �instance� variables as well as method names are distinct for all
features�

� Assume that method calls to this are explicit	 i�e� always this�fct�� � �� instead of
fct�� � ���

�� Variable declarations have no initializations�


���� Translation via Inheritance

For this translation	 we create a set of concrete classes	 one extending the other	 for
each used feature combination F��F��F��� � � �Fn� � � ����� For such a combination	 we
create n classes named Fi Fi�� Fi�� � � � Fn for i � �� � � � � n� These extend each other
and add one feature after another� For instance	 F� F� F� � � � extends F� F� � � �� The
class F� F� F� � � � adds the functionality for interface I� and lifters to F� for all others�
Formally	 an object creation

new F��F� � � � �Fn� � � ��

translates to

new F� F� � � � Fn

Furthermore	 we need the following Java classes for i � �� � � � � n�

class Fi Fi�� � � � Fn extends Fi�� � � � Fn
implements Ii� � � � � In f

�� Feature i implementation

Fi�vardecls �� variable declarations

Ii�t� Fi�f�� �� function implementations
���
Ii�tki Fi�fki�

���



�� Lift Feature i
� to i

Ii���t� Fi�i���f���� function redefinitions
���
Ii���tki�� Fi�i���fki���
��� �� Lift Feature n to i

In�t� Fi�n�f�� �� function redefinitions
���
In�tkn Fi�n�fkn �

g

The above schematic code implements feature i and	 using lifters	 possibly overrides
the features in the extended class� A concrete example for the way lifters are composed
is presented below� Recall also Figure �� for this example� Observe that n  i lifters
are needed	 which may call methods of the super class�
We have so far assumed that the features required for Fi via assumes are present

in Fi��� � � � � Fn for a feature combination F��F� � � � �Fi � � � �Fn� � � ��� This restriction can
be relaxed if we assume that the required ones are present in F�� � � � � Fi��	 similar to
virtual functions which are only de
ned in a subclass� However	 this does not work with
this translation� The translation assumes that the features required for Fi via assumes
are present in the extended class� In the class created for the combination F�� � � � � Fi	
this however entails that undeclared identi
ers occur in the translated code� This
might only be allowed in a dynamically typed language with dynamic method lookup�
Interestingly	 this assumption is not needed for aggregation	 which accounts for a small
di�erence between the two translations� Another di�erence will be examined in the
following section on parameterized features�
For instance	 the three features from the introduction translate into the following

class hierarchy	 if an object of type LF �CF �SF�� is used�

class SF implements Stack �

String s � new String���

void empty�� � s � ����

void push� char a�

�s � String�valueOf�a��concat�s����

void pop�� �s � s�substring���� � �

char top�� � return �s�charAt�	� �� � �

void push�� char a�

�this�push�a� � this�push�a�� ��

�

class CF�on�SF extends SF

implements Counter� Stack �

int i � 	�

void reset�� �i � 	� ��

��



void inc�� �i � i
�� ��

void dec�� �i � i��� ��

�� lift SF to CF

void empty�� �this�reset��� super�empty�����

void push� char a�

�this�inc��� super�push�a� ���

void pop�� �this�dec��� super�pop�� ���

�

class LF�on�CF�on�SF extends CF�on�SF

implements Lock� Counter� Stack �

boolean l � true�

void lock�� �l � false���

void unlock�� �l � true���

boolean is�unlocked�� �return l ���

�� lift CF to LF

void reset�� �if �this�is�unlocked���

�super�reset��� ���

void inc�� �if �this�is�unlocked���

�super�inc��� ���

void dec�� �if �this�is�unlocked���

�super�dec��� ���

�� lift SF to LF

void empty�� �if �this�is�unlocked���

�super�empty��� ���

void push� char a� �if �this�is�unlocked���

�super�push�a����

void pop�� � if �this�is�unlocked���

�super�pop������

�

In this example	 the above code provides for most sensible combinations	 except for
stack with lock only or counter with lock� In general	 this translation introduces
intermediate classes which may be reused for other feature combinations�


���� Translation via Aggregation

Aggregation is a common technique for composing objects from di�erent classes to a
larger object� It is used in some object�based systems as a replacement for inheri�
tance �US����
This translation requires a set of base implementations and one new class for each

feature combination� The idea of the translation is to create a class	 where	 for each
selected feature	 one instance variable of this type is used to delegate the services	
similar to �JZ���� We have to be careful with delegation and calls to this	 which

��



should not be sent to the local object� Hence we have to supply the delegate object
with the right pointer to the enclosing object	 which �replaces� this� For this purpose	
we create a base class for each feature implementation with an extra variable which will
point to the composed object� This construction enables us to handle the extension
discussed for the above translation� Here	 we can check the assumes clauses wrt the
full set of features	 and not just wrt the lower ones in the composition order� With the
inheritance translation we had to check these assumptions for each newly added class
wrt its superclass�
Unlike the 
rst translation	 we need a few further technical assumptions� For all

lifters	 all methods are lifted explicitly	 e�g�

int size�� � return super�size��� ��

is assumed to be present� Furthermore	 we need to assume that instance variables
which are used in lifters are declared public�� Also	 the name self may not be used�
The main task of this translation is to compose the lifters	 i�e� all lifters for one

method have to be merged at once here� This can lead to more dense code	 as all
needed lifters are composed in one class	 contrary to the inheritance translation�
An object creation

new F��F� � � � �Fn� � � ��

translates to

new F� F� � � � Fn

For this	 we 
rst need the following base classes for each feature implementation Fi	
i � � � � � n� For the type of self in the code below	 we use the class F� F� � � � Fn� If
no assumes statements are used	 then just Ii is su�cient and the class can be reused
for other object creations� Alternatively	 one can introduce an intermediate class with
just the needed interfaces Ii� I

�
i � � � I lii �

class Fi implements Ii f
�� reference for delegation

�F� F� � � � Fn� self �

�� reference for virtual functions�

�� based on required feature list

�� constructor for this class

Fi �F� F� � � � Fn s� f self � s� g �
Fi�vardecls

�� function implementations

Ii�t� 
F��f��

�Note that public declarations are omitted throughout this presentation�

�



���
Ii�tki 
F��fki �

g

For delegation to work in the above	 we need to apply a substitution 
 which renames
this to self�


 � �this �� self�

With the above base implementations we construct the class F� F� � � � Fn via aggre�
gation�

class F� F� � � � Fn implements I�� I�� � � � � In f
�� delegate objects

F� b� � new F��this��
���
Fn bn � new Fn�this��

�� now need to nest lifters

I��t� ��F����f���� lift feature � to �
���
I��tk� ��F����fk� �

�� lift feature � to �

I��t� ��
���F����f��
���
I��tk� ��
���F����fk� �
���

�� lift feature n to �

In�t� �n
n���n
n���n � � � 
��nF��n�f��
���
In�tkn �n
n���n
n���n � � � 
��nF��n�fkn�

g

For simplicity	 we only indicate the applications of nested lifters via unfolding operators

i	 where 
i�j unfolds the lifter from j to i	 sketched as


i�j � �super�f� �� Fi�j�f�� � � � � super�fki �� Fi�j�fkj ��

and also passes the actual parameters� Unlike in the examples below	 unfolding is
in general more involved for functions	 as we cannot have local blocks with return
statements� Hence we also assume for simplicity that methods return void��

�This is no restriction� as in Java objects of primitive type can be �wrapped into an object in
order to be passed as variable parameters�

��



Furthermore	 we have to delegate calls to super to the delegate objects� For this
purpose	 �i shall rename the instance variables and method calls of methods in Ii to
super correctly to the corresponding bi� For instance	 super�pop�� is translated to
sf�pop��	 where sf is the name of the instance variable in the following example� We
show the translation for the combination of the three introductory features� First	 new
base classes are introduced �with su�x �ag��

class SF�ag implements Stack �

Stack self�

String s � new String���

SF�ag�Stack s� �self � s���

void empty�� � s � ����

void push� char a�

�s � String�valueOf�a��concat�s����

�� self replaces this for delegation�

void push�� char a�

�self�push�a�� self�push�a����

void pop�� �s � s�substring���� ��

char top�� � return �s�charAt�	��� ��

�

class CF�ag implements Counter �

Counter self�

CF�ag �Counter s� �self � s���

int i � 	�

void reset�� �i � 	� ��

void inc�� �i � i
�� ��

void dec�� �i � i��� ��

int size�� �return i� ��

�

class LF�ag implements Lock �

Lock self�

LF�ag �Lock s� �self � s���

boolean l � true�

void lock�� �l � false���

void unlock�� �l � true���

boolean is�unlocked�� �return l���

�

A class for a composed object is shown below�

class LF�CF�SF implements Lock� Counter� Stack

�

�� delegate objects

SF�ag sf � new SF�ag�this��

��



CF�ag cf � new CF�ag�this��

LF�ag lf � new LF�ag�this��

�� delegate to lock

void lock�� �lf�lock�����

void unlock�� �lf�unlock�����

boolean is�unlocked��

�return lf�is�unlocked�����

�� delegate to lock

void reset��

�if �this�is�unlocked��� �cf�reset������

void inc��

�if �this�is�unlocked��� �cf�inc������

void dec��

�if �this�is�unlocked��� �cf�dec������

int size��

�return cf�size�����

�� delegate to stack

void empty��

�if �this�is�unlocked���

�this�reset��� sf�empty������

void push� char a�

�if �this�is�unlocked���

�this�inc��� sf�push�a�����

void push�� char a� �sf�push��a����

void pop�� �if �this�is�unlocked���

�this�dec��� sf�pop������

char top�� �return sf�top�����

�

Compared to the 
rst translation	 we need fewer classes here	 as the base classes can be
reused� On the other hand	 aggregation introduces another level of indirection which
may a�ect e�ciency�

��� Parametric Features

In order to write reusable code	 it is often desirable to parameterize a class by a type�
In this section	 we introduce parametric features	 which are very similar to parametric
classes� Due to the �exible composition concepts for features	 we also need expres�
sive type concepts for composition� For Java	 parametric classes have recently been
proposed and implemented in the language Pizza �OW���	 which will be the target
language for our translations� Apart from other nice extensions	 which are also used in
some examples here	 Pizza introduces a powerful extension for type�safe parameteriza�
tion� The notation for type parameters is similar to C!! templates �Str���� A typical
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example is a stack feature parameterized by a type parameter A	 written as A�	 as
follows�

interface StackA� �

void empty���

void push� A a��

void push�� A a��

void pop���

A top���

�

feature SFA� implements StackA� �

�� Use Pizza�s List data type

ListA� s � List�Nil�

void empty�� � s � List�Nil���

void push�A a� �s � List�Cons�a�s����

void push��A a�

�this�push�a� � this�push�a����

void pop�� �s � s�tail�����

A top�� � return s�head�����

�

Stacks over type char with a counter are then created via

new CF �SFchar���

Note that it is sometimes useful to make assumptions on the parameter for providing
operations	 e�g�

interface MatrixA implements Number� �

void multiply�matrix� �����

���

�

Such an assumption is di�erent from assumptions via assumes	 as it refers to a pa�
rameter and not to the inner feature combination� The di�erence is that this kind of
parameterization is not subject to liftings�
For translating parameterization into Java we refer to �OW���� Here	 we only aim

at translating into Pizza� As we mostly use basic concepts	 it is not necessary to go
into the details of the Pizza type system� We do however use another convenient	 but
not essential	 extension provided by Pizza� algebraic data types	 which are also called
class cases� With algebraic data types	 we can easily de
ne basic data structures such
as lists used above� The following class declaration introduces a class of list elements
which are either the empty list Nil or a cons node�

class ListA� �

case Nil�

case Cons�A head� ListA� tail��
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For such a data type	 an appropriate switch statement can be used	 for instance for
computing the length of a list�

int length�ListA� x� �

switch �x� �

case Nil� return 	�

case Cons� A el� ListA� xs��

return � 
 xs�length����

�


���� Type Dependencies

For parameterized features new and interesting speci
cation problems occur when com�
bining features� Not only can features depend on each other	 but the parameter types
can also depend on each other� This gets even more complicated if more than two fea�
tures are involved	 as shown below� For instance	 we may want to combine StackA�
with a feature which only allows elements within a certain range� Its implementation
maintains two variables of type A used for 
ltering� This feature Bound is parameterized
by a numeric type�

interface BoundA� �

boolean check�bounds�A el��

�

feature BFA implements Number�

implements BoundA� �

A min� max�

BF�A mi� A ma� � min � mi� max � ma���

boolean check�bounds�A el� ������

�

Clearly	 we can only combine the two features when both are supplied with the same
type� This can be expressed by liftings�

feature BFA� lifts StackA� � ��� �

Another example for such a dependency will be shown in Section ���� Note that in
feature implementations	 assumes conditions can also express type dependencies in the
same way�


���� Multi�Feature Interactions and Type Interactions

In the following	 we discuss multi�feature interactions and type interactions using the
undo example� The problem and the solution correspond to the functional version in
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Section ���� Here	 we introduce a new language construct to cope with the new aspects
of lifting features	 i�e� that lifting may change the type parameter�
The implementation of the undo feature is simple� save the local state of the object

each time a function of the other features is applied �e�g� push	 pop�� Undo depends es�
sentially on all �inner� features	 since it has to know the internal state of the composed
object� As we work in a typed environment	 the type of the state to be saved has to
be known� This multi�feature interaction is resolved by an extra feature	 called Store	
which allows to read and write the local state of a composed object� �The motivation
for store is similar to that of the Memento pattern in �GHJV�����
We introduce the following interface for Store�

interface StoreA� �

void put�s� A a��

A get�s���

�

Note that the parameter type depends on the types of all instance variables of the used
features� Consider for instance adding this feature to a stack with counter� Then for
both features the local variables have to be accessed�
With the Store feature	 we reduce the multi�feature interaction to a type interaction

problem� This means that the parameter type of a feature has to change when a
feature is lifted� The following solution makes these type dependencies explicit� We
use polymorphic pairs via the Pizza class PairA� B�	 de
ned as

class PairA�B� �

public case Pair�A fst� B snd��

���

�

This class is useful for type composition� In the lifter below	 we state that the inner
feature combination supports feature StoreA� for some type A� For this	 we need
a new syntactic construct	 namely assumes inner� As feature stack ST adds an in�
stance variable of type ListB�	 we can support the store feature with parameter
PairListB��A��

feature STB� lifts StorePairListB��A��

assumes inner StoreA� �

PairListB��A� get�s��

�return Pair�Pair� s� �� local state

super�get�s���� � �� inner state

void get�s�PairListB��A� s� � ��� �

�

The assumes inner however has some constraints� The lifted feature may not have
instance variables or calls to self where the changed type parameter type is used� �This
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can be allowed if the type change is a specialization	 which this is not the case in this
example��
This inner condition is implicit in other lifters and is only needed if the type pa�

rameters change� The lifting

feature F lifts F�A� � ��� �

can be seen as an abbreviation for

feature F lifts F�A�

assumes inner F�A� � ��� �

We show below how this change of parameters a�ects the two translation schemes of
Section ��� Continuing with the example	 we express that the counter CF adds an
integer and LF a boolean variable with the following lifters�

feature CF lifts StorePairA� int��

assumes inner StoreA� �

���

�

feature LF lifts StorePairA� Boolean��

assumes inner StoreA� �

���

�

With the above lifters	 we can assure that the store feature works correctly and with the
correct type for any feature combination� All we need to add is a base implementation
for store� As the base implementation cannot store anything useful	 we introduce a
Pizza type�class Void	 which has just one element	 void�el�

class Void � case void�el� �

�� base implementation

feature ST implements StoreVoid� �

void put�s�Void a � ���

Void get�s�� �return Void�void�el� ��

�

With the store feature	 we can now write the generic undo feature	 which can be
plugged into any other feature combination� It is important for the undo feature that
the store feature determines the type of the state of the composed object� The undo
feature can then have an instance variable of this type� Recall that this is not possible
for store	 as the type parameter of store changes under liftings�
The undo feature consists of two parts� storing the state before every change and

retrieving it upon an undo call� The latter is the core functionality of undo	 whereas
the former will be 
xed for each function which a�ects the state via liftings� First
consider the undo feature and its implementation	 which uses a variable backup to
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store the old state� Since there may not be an old state	 we use the algebraic �Pizza�
type OptionA�	 which contains the elements None or Some�a� for all elements a of
type A�

interface UndoA� �

void undo���

�

class OptionA� �

case None�

case Some�A value��

�

feature UFA� implements UndoA�

assumes StoreA� �

OptionA� backup � None�

void undo�� �

switch ��Option� backup� �

case Some�A a��

put�s� a ��

� � �

An alternative version of undo may store several or all old states� Due to our �exible
setup	 we can just exchange such variations�
For each of the other features	 we have to lift all functions which update the internal

state� As for lock	 this lifting is canonical	 e�g� for push�

void push�A a� �

backup � Option�Some� get�s����

super�push�a�� ��

Note that there is an interesting interaction between lock and undo� shall undo
reverse the locking or shall lock disable undo as well� We chose the latter for simplicity
and hence add lock after undo� Lifting undo to lock is canonical and not shown here�
As an example	 we can create an integer stack with undo and lock as follows�

new LF �UFPairint�Void�� �SFint� �ST� ��


���� Translation into Pizza

We show in the following how to translate the above extensions into Pizza� This
will reveal another di�erence between aggregation and inheritance� for inheritance	 we
cannot cope with the change of parameters� Otherwise	 the translation to Pizza is
quite simple�
For aggregation	 additional inner statements just translate into types of the instance

variables of class generated for a combination� This is shown in the following code for
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a class generated for a composed object with both stack and store features� We 
rst
introduce a class SF�agA� for parametric stacks� As we do not allow calls to self
for features whose type parameter changes during lifting	 we do not use the usual
delegation mechanism in the above class� Hence we use just ST� The class SF�STA�
exports the interface StorePairListA��Void��	 but uses a delegate object with
interface StoreVoid��

class SF�agA� implements StackA� �

StackA� self �

SF�ag�StackA� s� �self � s���

ListA� s � List�Nil�

void empty�� ���

�

class SF�STA� implements StackA��

StorePairListA��Void���

SF�agA� sf � new SF�ag�this��

StoreVoid� st � new ST���

PairListA��Void� get�s��

�return Pair�Pair�sf�s� st�get�s������

���

�

A further detail to observe is that all type variables have to be considered for the
translation� This means that for the newly introduced class	 all type variables which
appear as parameters in the desired set of features have to appear as parameters� For
instance	 for the combination FA��GB��	 we need a class F�GA�B��
For inheritance	 an inner statement is an assumption on the extended class� If

the parameter changes	 this amounts to specialization for parameterized classes	 which
is problematic in typed imperative languages	 as discussed in �OW���� In Pizza	 the
problem in this example is that subtyping does not extend through constructors such as
List� For instance	 we cannot translate the above feature combination to the following
�illegal� code�

�� illegal � Type conflict�

class ST�SFB�A� extends STA�

implements StackB��

StorePairListB��A�� �

PairListB��A� get�s�� �

Pair�Pair� s� �� local state

super�get�s���� �� inner state

�

���

�

If the parameters do not change	 the translation is straightforward�
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��� Generic Liftings via Higher�order Functions

Generic liftings are possible via higher�order functions	 which are available in Pizza�
In the stacks example it is easy to see that lifting to lock is schematic� It is natural
to express this by higher�order functions� We use the Pizza notation ����void for a
function type� Pizza function types can be polymorphic as well and are	 in general	
written as

�A�� A�� ���� An���A	�

where Ai are types�
As an example of a generic lifting	 consider for instance the following function for

lifting lock�

void lift�to�lock� ����void f�

� if �this�is�unlocked�� � � f�� ����

It can be used e�g� with

void reset�� �lift�to�lock�super�reset����

which replaces

void reset��

�if �this�is�unlocked��� �super�reset������

It can be useful to extend the language to allow default lifters	 which are applied if no
explicit lifters are provided�
Note that there is a small problem with generic lifters� We cannot write a generic

lifter which suits both functions and procedures �without return values� in Java� This
is of course only useful in cases where the return value of the lifter is generic as well�
Consider for instance the above lifter� it cannot be applied to lift the function pop� A
lifter for this case would look like�

void lift�fun�to�lock� ����char f�

�return f�� ��

This code may replace the lifters for top and size to Lock� �Note that disabling these
two functions via lock is more di�cult� What shall these lifted functions return� The
only two options are raising an exception instead or returning an arbitrary or default
value��
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��� Features and Exceptions

So far	 we have used lifters to adapt features to the context of other features	 which
usually meant additional state in the form of instance variables� Yet features may
equally well add exceptions	 as shown in Section ���� In the setting of Java	 exceptions
are already provided	 but are too limited for our purpose as discussed below�
Consider for instance the stack example and adding exception handling for stack

under�ow� The idea is to add a feature which does nothing but raising the appropriate
exception� This feature can be added or omitted as desired�

�� exception for underflow

class Underflow extends Exception �

�

interface UnderflowI �

void display�exception���

�

feature Underflow implements UnderflowI �

void display�exception��

�System�out�println��Stack Underflow������

�

In the above example	 the under�ow feature only implements some auxiliary func�
tions	 for instance the function display�exception� �For a further example see Sec�
tion ������� The exceptions are raised in the lifters�

feature Underflow lifts Stack �

public void pop�� throws Underflow

� if �is�empty��� throw new Underflow���

else super�pop��� �

�

This example shows that the feature model easily accommodates exceptions	 but in
Java a small language extension is useful� Java requires to declare an exception for any
method whose body may raise one	 and also in interfaces for which one implementation
raises an exception� This rigid and fully explicit declaration of exceptions in Java can
be used for feature combination	 but a�ected methods are marked	 if the exception
feature is used or not� For instance	 in the above example	 the under�ow exception
has to be declared for the pop function at every occurrence� As we can use lifters
to add exceptions	 this seems too strict� Hence we argue that only the lifters should
declare exceptions in this case� The translation to Java in turn has to add declarations
of exceptions to function de
nitions appropriately� This may require creating a class
twice	 with and without exception handling� As the main idea is straightforward	 we
refrain from presenting this in detail�
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��� Examples

In the following sections we sketch a few typical applications for feature�based pro�
gramming� These range from generic application frameworks to application domains
where change and �exibility are predominant�


�
�� Variations of Design Patterns

We show in the following that for several typical programming schemata	 coined design
patterns �GHJV���	 feature�based implementations provide high �exibility and the de�
sired reusability� This is particularly important if several features or design patterns
are combined� The following examples are freely taken from standard literature on
design patterns �GHJV����

Proxy Pattern

Consider implementing some functional entity	 e�g� sets	 where caching of the results of
operations is a viable option� In the lines of �GHJV���	 this can be viewed as a Proxy
pattern� Clearly	 a cache is an independent feature	 and there exist many variations
of caching� For instance	 considering the data structures used and the replacement
strategy� And it furthermore may depend on appropriate hash functions	 which could
also be provided via features�
When writing a reusable set of caching modules	 the various cache implementations

just implement the data structures and the access functions� Interaction resolution in
turn modi
es the access operations for the object to be cached and determines the type
dependencies�
Consider writing this with classical object�oriented languages� for each needed com�

bination of a cached object	 a cache	 and a hashing function	 a new �sub��class has to
be implemented�
A sketch of such an example is shown below� It shows how to add a cache to the

parametric features SetA� and DictionaryA� B�� For caching	 these data structures
are viewed as mappings	 from A to boolean and A to B	 respectively� The feature imple�
mentation CacheIA�B� �whose interface Cache is not shown here� caches mappings
from A to B�

interface SetA� �

void put� A a��

boolean contains�A a��

�

interface DictionaryA� B� �

OptionB� get�A key��

void put�A key� B value��

�
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feature CacheIA�B� implements CacheA�B� �

���

void put�s� A a� B b� ����� �

boolean find�s�A a� ������

B get�s�� ������

�

feature CacheIA�B� lifts DictionaryA� B� �

�� adapt access functions to cache

OptionB� get�A key�

�if find�key� return Option�Some�get�s����

else return super�get��� �

���

�

�� second parameter is just boolean here

feature CacheIA�boolean� lifts SetA� �

���

�

Note that the lifters express the type dependencies�

Adaptor Patterns

The adaptor design pattern �GHJV��� glues two incompatible modules together� This
design 
ts nicely in our setting	 as adaptors should be reusable� Typically	 there is some
core adaption functionality	 e�g� some data conversion	 which we model as a feature�
When adding this to another feature	 we can just lift the incompatible functions with
help of the core functionality�
An example is converting big endian encoding of data to little endian� For instance	

if we output data on a �low�level� interface which needs big endian	 but we work with
little endian	 such a conversion feature can easily be added� The adaptor feature
provides the core functionality	 here the data conversion	 and interaction resolution
adapts the operations of the object�
The following features and lifters sketch the solution of pluggable adaptors with

features� The adaptor feature Big�to�little�endian adds a conversion function	
which is used in the lifter to provide the put method with big endian data input�

feature Big�to�little�endian �

�� convert to little endian

int big�to�little�int a� ������

�

�� assumes little�endian

interface low�level�IO �

void put�int a��

�
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feature Big�to�little�endian

lifts low�level�IO �

void put�int a�

�super�put� big�to�little�a��� ��

�

There is an interesting optimization if the cache feature is used with the above
adaptor� The interaction handling for the two feature as it is not needed to convert
the cached data to big endian�


�
�� Automata�based Modeling Techniques

Diagrammatic modeling techniques have gained large interest in the last years� We
discuss here automata�based description techniques	 where we aim at composing hi�
erarchical automata from smaller automata parts� In particular	 we discuss interac�
tions arising in such descriptions� We follow an example with was studied by Teege
in �Tee��	 Tee��� as a subset of a group�ware application� In this example	 hierarchical
automata are used to describe the status of a document� As discussed in �Tee���	 there
arise feature interactions	 which are not easily modeled by simple automata concepts�
We show here how to model automata and the interactions by feature�oriented pro�
gramming� The main bene
t we gain is composition of automata	 where our model
of feature interactions applies� Note that features may provide the basis for devel�
oping more advanced automata composition concepts	 which possibly permit graphic
notation� This is discussed below�
The idea of this example is to specify smaller automata as features and to com�

pose them with the techniques of feature�oriented programming� This enables �exible
composition	 which is the main di�erence to the many other techniques for graphic
description of software components�
In this example	 documents are manipulated via a groupware application which

admits several options or features for controlling the access to the documents� These
features can be set individually for each document� They usually model the current
state of each document to control the allowed operations� We model the following	
very basic features as automata�

� DocAut�omaton� with states existent and undef	 and a transition �or function�
init�

� ChangeAut with states changeable and fixed and a transition fix� ChangeAut
assumes DocAut and de
nes a sub�automaton of state existent� This can be
viewed as a re
nement of a state�

� ErasableDoc assumes also DocAut and de
nes a function erase�

The combination of these three features is shown in Figure ���� The full application
contains a larger set of features� The motivation for this example is to select the desired
features individually for each document�
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Figure ���� Hierarchical Automaton for the Status of a Document

The interaction problem of this example is clearly between ErasableDoc and Change�
Aut� If ChangeAut is in state fixed	 then erase should not be possible� This is achieved
here by lifting ErasableDoc to ChangeAut� As shown below	 we disallow erase if the
local state is fixed�
Note also that hierarchical automata pose another problem which can be viewed as

an interaction� The problem arises since a sub�automaton is only active	 if the global
automaton is in the corresponding	 re
ned state� In case of a global transition to a new
state	 which has been re
ned to a sub�automaton by some other feature	 it is unclear
if the sub�automaton should be �re��initialized or if its old state be preserved�
The following code de
nes the base document with two global states� The feature

implementation requires another feature BA	 as indicated with the assumes clause�
Feature BA allows DA	 the implementation of DocAut	 to use some basic functionality
of BA to construct automata� Hence the method newstate can be used to de
ne a new
state� Its details shall not be discussed here� In general	 the base functionality of a
new feature can rely on the functionality of the required ones�

interface DocAut �

void init���

final int undef�

final int existent�

�

feature DA implements DocAut assumes BA �

final int undef � newstate���

final int existent � newstate���

�� default state

DA�� �state � undef���
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void init��

�if �state��undef� state � existent� ��

�

The second component	 ErasableDoc	 just adds one transition� As it adds no states	
its implementation requires DA in order to implement the method� The lifting of DocAut
is trivial �and could be omitted��

interface ErasableDoc �

void erase���

�

feature EA implements ErasableDoc assumes DA�

void erase��

�if �state��existent� state � undef� ��

�

feature EA lifts DocAut �

void init�� �super�init��� ��

�

The de
nition of ChangeAut is more involved	 since it de
nes a local automaton	 named
local�aut	 with two states� Its constructor CA initializes its local state�

interface ChangeAut �

void fix���

�

feature CA implements ChangeAut assumes BA �

�� CA refines a state�

�� hence uses a local automaton

BA local�aut � new BA���

final int changeable �

local�aut�newstate���

final int fixed �

local�aut�newstate���

�� initialize with default state

CA���

super���

local�aut�state � changeable���

void fix�� � local�aut�state � fixed���

�
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The interesting aspects of ChangeAut are de
ned in its lifters� To lift DocAut	 we turn
the local automaton into an initial state	 if init is invoked� Furthermore	 to solve the
interaction between with ErasableDoc	 we rede
ne erase�

feature CA lifts DocAut �

�� lift DA� initialize

void init�� �

�� changeable is default state

local�aut�state � changeable�

super�init��� ��

�

feature CA lifts ErasableDoc �

�� lift EA�

void erase�� �

�� disable erase if fixed

if �local�aut�state �� fixed�

super�erase��� ��

�

For the full example with more	 but similar interactions	 we again refer to �Tee����
Note that the simple implementation of automata is su�cient for our purpose� For
pure automata	 there clearly exist more e�cient implementations� However	 for many
software applications	 automata just pose as a skeleton of the actual program	 which is
completed as a further step� For this purpose	 our implementation is more appropriate	
as it is extensible�
We have shown that typical composition problems of automata descriptions can

be modeled by our feature model� Clearly	 when working with automata	 a graphical
notation for interaction resolution is desirable� For some of the typical interaction cases
it is possible to de
ne graphical equivalents�
Other speci
cation concepts with automata can be found in �HN��	 Tee���� For

instance	 the two interactions above are supported by special purpose languages with
graphical notation� The 
rst problem of disabling a transition is possible in an object�
oriented variant of Statemate �HN��� and in Hierastates �Tee���� In both languages	
the local transition has precedence over the global�
The other problem regarding the life�time of local states is resolved by particular

annotations in Statemate �HN���� A typical problem of such simple notations is that
certain aspects cannot be modeled	 e�g� that only particular global transitions reset the
local state�
Our main point here is that common automata concepts allow for typical compo�

sition operations on automata	 but do not consider interactions between components
explicitly	 as done here� With the concepts developed here	 it is possible to compose
just the wanted features�automata	 where interactions are resolved as speci
ed� It
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remains for future work to extract a broad set of typical interactions and to devise
graphical notation for them�


�
�� Feature Interaction in Telecommunications

A well known problem in feature interaction stems from the abundance of features
telephones �will� have� For instance	 �re��consider the following con�ict occurring in
telephone connections� B forwards calls to his phone to C� C screens calls from A
�ICS	 incoming call screening�� Should a call from A to B be connected to C� In this
example	 there is a clear interaction between forwarding �FD� and ICS	 which can be
resolved in several ways� For many other examples we refer to �CGN�����
Similar to Section ���	 we demonstrate our techniques with the following set of

features for this domain of connecting calls�

� Forwarding of calls

� ICS �incoming call screening�

� OCS �outgoing call screening�

Although ICS and OCS look very similar	 there are small di�erences� For instance	
they may interact di�erently with other features	 as shown below�

The Basic Phone

The basic building block is a feature Phone	 which provides a function connect for
computing the phone reached by some dialed number� In addition	 we use a simple
technique for adding the actual services to the full object� Each feature adds its
functionality by extending a function dispatch �for feature dispatch�	 which is used
by connect� As we use exceptions for modeling a busy signal	 the function dispatch

may throw an exception	 as shown in the following Java interface description�

interface Phone �

int connect�int dest� �

int dispatch�int dest� throws Busy � �

The implementation provides for a trivial connect functionality	 just in order to set
the stage for other features� Note that we need an explicit constructor Ph here	 which
initializes the instance variable used for the origin of a call�

class Ph implements Phone �

�� origin of call

int o�

�� function for creating

�� and initializing objects
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Ph�int orig� � o � orig�� �

�� trivial dispatch

int dispatch�int dest� throws Busy

�return dest���

int connect�int dest� �

try� return dispatch�dest�� �

catch�Busy B�

� println��Busy � �� return 	� � �

�

Forwarding

Next we add a feature for forwarding with the following interface�

interface Forward �

boolean fd�check�int i��

int forward�int dest�� �

The code is again as simple as possible	 just forwarding selected numbers to the next
number via an auxiliary function fd�check�

feature FD implements Forward �

�� aux� function

boolean fd�check�int i�

�� naive check if forwarding is desired

� return �i �� � �� i �� � �� i �� �	 ��

i �� �� �� i �� ���� ��

int forward�int i� � return i
�� ��

�

To integrate the service	 we lift the dispatch function in the following lifter�

feature FD lifts Phone �

int dispatch�int dest� throws Busy �

if �fd�check�dest��

�� recursive forwarding �

return connect�forward�dest���

else return super�dispatch� dest��

�

�

Note that the above either calls super�dispatch in order to invoke �possibly� other
features	 or calls connect to attempt a recursive connect attempt� �This recursive
forwarding is not limited	 for simplicity��
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Incoming Call Screening

For ICS we use a simple check for each call and raise the exception busy if ICS disallows
a call� The structure of the following code is as above�

interface IcsI �

int ics�int dest� throws Busy �

�

feature Ics implements IcsI assumes Phone�

Ics�int orig� �super�orig�� ��

�� aux� functions

boolean ics�check�int i� �

�� no calls from � to �

return �o �� � � i �� ��� ��

int ics�int dest� throws Busy �

if �ics�check�dest�� throw new Busy���

else return dest���

�

feature Ics lifts Phone �

�� lift Phone

int dispatch� int dest� throws Busy �

�� add ICS service

return super�dispatch� ics�dest� � ���

�

Resolving the ICS�Forward�Interaction

To resolve the interaction between forwarding and ICS	 we lift the forward function to
ICS� We chose the lifting for forward as follows�

feature Ics lifts Forward �

�� lift forward

int forward�int dest� �

�� update origin �also ok if not forwarded��

o � dest�

return super�forward�dest�� ��

�

In case of forwarding over several hops	 ICS is checked for each �intermediate� hop wrt
the next hop� If only a check wrt the origin of the call is desired	 one just has to adapt
the lifter �and not to update the origin of the call�� Thus	 lifting allows for a modular
resolution of the interaction between two features�
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Outgoing Call Screening

OCS is quite similar to ICS	 but we model interaction with forwarding di�erently�
OCS should always be checked from the initial phone to the 
nal destination� With
this choice OCS can be modeled similar to ICS	 but with a di�erent interaction code�
We only show the interface here for brevity�

interface OcsI �

int ocs�int dest� throws Busy�

�

Examples

It is now possible to create objects with any subset of the three features ICS	 OCS and
FD� For instance	 with the object con created by

con � new Ics �FD �Ph �����

FD and ICS are selected and the originating phone is set to ��
With the above code and settings	 we obtain the following examples for a connect

call from phone � with all features�

�� just gives  

println� con�connect�����

�� just gives  

println� con�connect� ���

�� gives �� as forwarded to ��

�� which is allowed by ICS

println� con�connect�����

�� gives Busy� as forwarded to ��

which is not allowed by ICS

println� con�connect�����

�� gives ��� as forwarded twice

println� con�connect������

It is easy to imagine other features and also variations of the above features� With
our approach such features can be composed in a �exible way� This also provides for a
clear structure of their dependencies	 which is needed if the number of complementary
or alternative features grows�

��	 Extensions

We discuss in the following a few extensions and issues which have not been addressed
so far� As we have focused on feature composition	 several interesting aspects have
been neglected�
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� We have not discussed visibility of attributes of features here	 as this does not
belong to our core ideas	 but it is clearly another issue to be discussed� Currently	
features can use only the interfaces of the assumed features	 whereas the instance
variables of concrete other features are not visible	 for good reason� Lifters how�
ever lift a feature interface over a concrete feature constructor� Hence only the
instance variables of the concrete feature are visible�

Hiding some functions is clearly needed in some applications� For instance	 when
adding the counter to a stack	 we may not want to inherit the inc and dec
functions	 as they may turn the object into an inconsistent state�

� In this presentation	 liftings depend on one concrete object constructor and an
interface	 which can be impractical if the interaction resolution depends on the
concrete constructor which provides the methods of the interface� It is easy
to imagine an extension for this purpose	 but it is currently unclear if such a
violation of encapsulation is needed�

� An adaption to distributed objects should also address the problem of inheritance
anomaly �MY��	 LLNW���	 as this addresses similar interaction problems�

� Instead of letting features assume other features	 it can also be useful for speci
ca�
tion purposes to disallow features	 similar to canceling other mixins in �SCD�����

��� Discussion of the Feature Composition Archi�

tecture

We discuss in the following the main assumptions and characteristics of our feature
composition approach	 followed by an overview of related work and some extensions�
Our feature model enables the �exible composition of features and lifters	 which can
greatly reduce complexity� Our main claim is that there is a large class of applications
for our expressive feature composition method� Recall that our approach generalizes
inheritance and aggregation and integrates nicely with several common language ex�
tension�
In general	 feature interactions are semantic problems of two or more features �and

not a priori of their implementations�� Our composition method for features is designed
to clarify dependencies and to provide structure and �exibility� In this sense	 we do not
address the general �semantic� feature composition problem but discuss programming�
level composition of feature implementations� No general�purpose technique	 including
ours	 can solve the undecidable problem of detecting semantic feature interactions�
A premise of our approach is that any interactions can be handled for two features at

a time� This means that interactions between three or more features cannot be modeled
directly if they do not show up between two individual features� In our experience	 such
cases do not appear frequently in practice� For instance	 in the literature on feature
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interactions in telecom	 the survey in �CGN���� reports  feature interactions	 but
none of them with three features� �And hence none where the interactions do not show
up when considering two features at a time�� When true multi�feature interactions
examples have been identi
ed �which do not indicate an inconsistency�	 there are two
options� If the features are highly entangled	 it is preferable to write code for particular
combinations� Otherwise	 there are usually ways to circumvent the interaction or
reduce it to two�feature interactions� For instance	 a feature can be split into two
separate features� Recall for instance the undo feature which assumes the store feature
to be added before �wrt the feature order� the features to be undone�
Consider the following example for a true three�feature interaction� Assume an

email client with added features for handling priorities of emails �bulk	 normal	 priority�
as follows�

�� Basic email client� send and receive emails

� Downclass outgoing mails �at least for some users�

�� Discard incoming bulk mail

�� Forward incoming emails to another address

With the assumptions below we construct a true three�feature interaction�

� The basic client does not interpret priorities�

� Downclassing is destructive on the email �no copying��

� Forwarding takes place before delivery of incoming mail�

� Features are composed in the above order� �Which is drawn upside down in
earlier pictures��

With all the above features	 an incoming normal message may be forwarded	 and
hence downclassed to bulk by the downclass feature� As the email is modi
ed to bulk	
it is discarded by the incoming bulk 
lter� In brief	 the email is forwarded but never
delivered to the client� This undesired interaction does not happen with two features
at a time�
Yet	 as in most other cases	 it is easy to avoid �e�g� by reordering features or di�erent

feature implementations�� This may incur implementation and runtime overhead in
some cases	 which is the price for �exibility and robustness�
Compared to the above example	 a case which occurs more frequently is when

performance optimizations are possible only for particular combinations� For instance	
for the combination of the stack	 counter	 and lock feature	 in a call to push the locking
of the stack is checked twice� Clearly	 this small performance loss can be avoided�
Some simpler optimizations can be performed by a compiler� For complex ones	 one

���



would need a domain�speci
c optimizer	 as for instance pursued by aspect�oriented
programming �KLM�����
The second major assumption of our approach is that we compose features following

an ordering between features� This is given by the feature lifters� Only from the outside
interface it is possible to view an object as composed of a set of features� There are
several reasons for this ordering� First	 it is in the spirit of inheritance and it seems to
be the simplest structure capturing the essential object�oriented ideas like inheritance�
Second	 there are problems when viewing features as unordered citizens� Clearly	 when
features are fully independent	 it is not needed to order them� A simple syntactic
extension may alleviate the problem�
Although one can imagine more complex feature composition schemes	 we argue

that basic language features should be as lean as possible� This favors e�cient imple�
mentations and clarity to the programmer�
We show next that composition schemes without order have di�culties wrt liftings

or inheritance� The problem seems to be similar to known problems with multiple
inheritance�

Feature lock1

Feature O

Feature lock2

lock, unlock lock, unlock

Figure ��� Alternative Feature Composition

Consider an example of an object integrating two unordered features	 both im�
plementing a lock� Such a con
guration with lock� and lock	 to which a feature O
is added	 is shown in Figure ��� The interaction is that closing lock� should also
close lock and vice versa� Hence we need liftings from the two features to feature O�
The simple lifting model is to lift the functions of each feature to O	 e�g� by applying
all lifters corresponding to the other present features� The lifter of lock� shall call
lock��lock��� and similarly the lifter for lock calls lock��lock���� The problem
is which version of lock should be called	 the lifted or the original of the feature� If
original is called	 then all other liftings are ignored	 e�g� if other features are involved�
Or if the lifted version is called	 then the procedure diverges�
An alternative solution would be to introduce a �global� lock function and to lift

each local lock to the global one� Then a �exible number of locks can be handled by one
access point� This is another example where introducing extra features �and ordering�
is useful and leads to a less ambigous structure�
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Chapter 	

Concluding Remarks

We have presented a novel model of feature�oriented design	 including new program�
ming and speci
cation concepts� For programming	 features can be de
ned individually
and are separated from interactions with other features� This is the main di�erence
to other concepts of abstract subclasses or inheritance� Thus it is much more �exible
and has a larger potential for reuse� The recent interest in feature interactions	 mostly
stemming from multimedia applications �Zav��	 CO���	 shows that there is a large de�
mand for expressive composition concepts where objects with individual services can
be created� It also supports that our view of inheritance as interaction is a natural
concept�
Compared to classical object�oriented programming	 feature�oriented programming

provides much higher modularity and �exibility� Reusability is simpli
ed	 since for
each feature	 the functional core and the interactions are separated� This di�erence
encourages to write independent	 reusable features and to make the dependencies to
other features clear� In contrast	 inheritance with overwriting mixes both	 which often
leads to highly entangled �sub��classes�
The modular structure of this approach allows to disassemble and to pinpoint the

problems of feature interactions� Only with such a modular design	 can we hope for
adaptable and reusable software� Particularly if the number of features grows	 design
by features seems preferable over traditional object�oriented design�
Furthermore	 we have shown abstract speci
cations of complex objects with implicit

state� We claim that our speci
cation style is suitable for re
nement	 as it avoids
overspeci
cation� We allow to quantify operations�laws over composition schemes	
which is essential for abstract reasoning about state and feature combinations� As
we deal with references	 inheritance and virtual functions	 we can cover the essential
ingredients of object�oriented systems� Our claim is that we can use well known type
systems of functional languages to model binary functions	 and do not have to resort
to f�bounded polymorphism	 as e�g� in �OW����
Our new contributions to programming and speci
cation concepts open many issues

for further studies� We brie�y list a few ones� For programming languages	 e�cient
compilation concepts for feature�oriented programming are to be examined� Another
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extension is to permit dynamic feature change	 i�e� adding and removing features of an
object at run time� This may require dynamic type systems without static type safety�
For both speci
cation and programming	 more extensive practical experience with
features and empirical results on reuse and feature variations are desirable� Finally	
mechanical proof support for speci
cation and veri
cation can enhance the use of
speci
cation concepts�
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W� Burton	 J� Fasel	 A� Gordon	 J� Hughes	 P� Hudak	 T� Johnsson	
M� Jones	 S� Peyton Jones	 A� Reid	 and P� Wadler� Haskell ���	 A non�
strict	 purely functional language� Report YALEU � DCS � RR�����	
Department of Computer Science	 Yale University	 May �����

�Pie��� B� C� Pierce� Basic Category Theory for Computer Scientists� MIT Press	
Cambridge	 Mass�	 �����

�Pre��a� C� Prehofer� Feature�oriented programming� A fresh look at objects� In
ECOOP 
�� Springer LNCS ���	 �����

�Pre��b� C� Prehofer� From inheritance to feature interaction� In Max M�uhlh�auser
et al�	 editor	 Special Issues in Object�Oriented Programming� ECOOP
���� Workshop on Composability Issues in Object�Orientation	 Heidel�
berg	 ����� dpunkt�Verlag�

�Pre��c� C� Prehofer� From inheritance to feature interaction or composing
monads� In Arbeitstagung Programmiersprachen� Tagungsband der GI�
Jahrestagung� Springer�Verlag	 �����

�Pre��d� C� Prehofer� An object�oriented approach to feature interaction� In P� Dini	
editor	 Fourth IEEE Workshop on Feature Interactions in Telecommuni�
cations networks and distributed systems� IOS�Press	 �����

�PT��� B� C� Pierce and D� N� Turner� Simple type�theoretic foundations
for object�oriented programming� Journal of Functional Programming	
������$��	 April ����� A preliminary version appeared in Principles of
Programming Languages	 ����	 and as University of Edinburgh technical
report ECS�LFCS����	 under the title �Object�Oriented Programming
Without Recursive Types��

�RAI�� The RAISE Language Group� The RAISE Speci�cation Language� BCS
Practitioner Series� Prentice�Hall International	 ����

�Rya��� M� Ryan� Fireworks project homepage	 case studies	 �����
http���www�cs�bham�ac�uk�!mcp�fireworks�casestudies�html�

���



�SCD���� P� Steyaert	 W� Codenie	 T� D#Hondt	 K� De Hondt	 C� Lucas	 and M� Van
Limberghen� Nested Mixin�Methods in Agora� In O� Nierstrasz	 editor	
Proceedings of the ECOOP 
�� European Conference on Object�oriented
Programming	 LNCS ���	 Kaiserslautern	 Germany	 July ����� Springer�
Verlag�

�SG��� R� Stata and J� V� Guttag� Modular reasoning in the presence of subclass�
ing� In Object�Oriented Programming Systems� Languages� and Applica�
tions	 October �����

�SG��� M� Shaw and D� Garlan� Software Architecture� Prentice Hall	 �����

�Sim��� C� Simonyi� Intentional programming � innovation in the legacy age� IFIP
WG �� meeting	 �����

�SJE��� G� Saake	 R� Jungclaus	 and H��D� Ehrich� Object�oriented speci
cation
and stepwise re
nement� In J� de Meer	 V� Heymer	 and R� Roth	 editors	
International IFIP Workshop on Open Distributed Processing	 volume �
of IFIP Transactions C� Communication Systems	 pages ��$��	 Berlin	
Germany	 October ����� North�Holland�

�Slo��� O� Slotosch� Re�nements in HOLCF� Implementation of Interactive Sys�
tems� PhD thesis	 Technische Univerit�at M�unchen	 �����

�SPL��� L� M� Seiter	 J� Palsberg	 and K� J� Lieberherr� Evolution of object be�
havior using context relations� In David Garlan	 editor	 Symposium on
Foundations of Software Engineering	 San Francisco	 ����� ACM Press�

�Ste��� L� A� Stein� Delegation is inheritance� ACM SIGPLAN Notices	
�������$���	 December �����

�St"��� K� St"len� Re
nement principles supporting the transition from asy�
chronous to synchronous communications� Science of Computer Program�
ming	 �����

�Str��� B� Stroustrup� The C�� Programming Language� Addison�Wesley	 Read�
ing	 ����� nd edition�

�Tal��� Building object�oriented frameworks� Technical report	 Taligent	 �����
Avaliable at www�taligent�com�

�Tee��� G� Teege� Hierastates� Flexible interaction with objects� Technical report	
TU M�unchen	 TUM�I����	 �����

�Tee��� G� Teege� Hierastates� Supporting work�ows which include schematic
and ad�hoc aspects� In Michael Wolf and Ulrich Reimer	 editors	 Proc� of
�st Int� Conf� on Practical Aspects of Knowledge Management PAKM
��	
�����

���



�Tee��� G� Teege� Gestaltung von aktivit�atenunterst�utzung in cscw�systemen
durch endbenutzer	 ����� Habilitationsschrift�

�US��� D� Ungar and R� B� Smith� Self� The power of simplicity� Lisp and
symbolic computation	 ����	 �����

�Van��� M� VanHilst� Role Oriented Programming for Software Evolution� PhD
thesis	 Univ� of Washington	 �����

�Wad��� P� Wadler� Theorems for free( In Proc� ACM Conf� Functional Program�
ming and Computer Architecture	 pages ���$���	 �����

�Wad�� P� Wadler� The essence of functional programming� ��th POPL	 pages
�$��	 January ����

�Wad��� P� Wadler� Monads and functional programming� In M� Broy	 editor	
Proceedings of the ���� Marktoberdorf international summer school on
program design calculi� Springer Verlag	 �����

�WG��� W� Wayt�Gibbs� Software#s chronic crisis� Scienti�c American	 �����	
September �����

�Wir��� M� Wirsing� Algebraic Speci
cation� In J� van Leeuwen	 editor	 Hand�
book of Theoretical Computer Science�	 chapter ��	 pages ���$���� North�
Holland	 Amsterdam	 �����

�WP��� Y� Wang and D� L� Parnas� Simulating the behavior of software modules by
trace rewriting� IEEE Transactions on Software Engineering	 ���������$
���	 October �����

�Zav��� P� Zave� Feature interactions and formal speci
cations in telecommunica�
tions� IEEE Computer	 XXVI���	 August �����

���


