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Abstract. This paper presents a new approach for modular design of highly-entangled software 
components by statechart diagrams. We structure the components into features, which represent 
reusable, self-contained services. These are modeled individually by statechart diagrams. For 
composition of components from features, we need to consider the interactions between the 
features. These feature interactions, which are well known in the telecommunications area, 
typically describe special cases or cooperations which only occur when features are combined. 
We describe these interactions graphically as well by partial statecharts. The main novelty is 
that full component descriptions are created automatically in a plug-and-play fashion by 
combining the statecharts for the required features and their interactions. Furthermore, we 
develop different classes of statecharts and show the interactions on a case-by-case basis. For 
composition, we use semantic refinement concepts for statecharts which preserve the original 
behavior. 
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1 Introduction 
When talking about a piece of software, we often speak of a “feature” which this software 
has.  For instance, when collecting requirements, features of a software system are common 
terminology. We propose here a graphic description method for feature-centric software 
development which supports composition of components from features in a modular way. 
The abstract behavior of features is modeled by statechart diagrams. However, features are 
often not independent and do interact in many ways.  The main contribution of this paper is 
to describe features and their interactions graphically and to model their composition by 
stepwise refinement relations between statecharts. 
 
A key problem is that features often have to cooperate or interact in unforeseen ways. In 
larger systems with many features, these interactions can lead to highly entangled code 
which is difficult to maintain. The problem of feature interactions is well established in the 
telecommunications area [3]. While most of the work in this area focuses on detecting 
interaction, we focus on software design methods which consider interactions. The problem 
is that handling interactions in most cases violates modularity. One often has to fix a special 
case in one feature which only occurs if another particular feature is present. Hence the 
code implementing these features becomes overloaded and obscures the core functionality 
of the feature as well as the dependencies.  
 
For our development method, we employ graphic design of features by statechart diagrams 
(or abstract state machines). A novel point is that we model features and interactions as 
partial statecharts and transitions, which can be combined automatically when needed. This 
approach allows one to cross-cut large statechart diagrams into smaller features and their 
interactions. Based on semantic refinement concepts for statecharts, we present rules to 
create component models by combining the statecharts of the required features. These 
graphic refinement rules ensure that the feature behavior does not change during 
composition.  
 



 

Our design method aims at graphic plug-and-play feature composition, which is essential in 
the following application scenarios: 

- Many different versions of a software component are needed, each having different, 
often alternative features. 

- Applications where monolithic software is unsuitable, since only the features 
needed by a customer are delivered. For instance, when downloading software on a 
limited mobile device, the download time and storage space on a mobile device 
should be kept minimal. 

- Applications where entangled features are added or updated frequently during the 
live-cycle of a software component. 

 
As an example consider an email server, where [4] has analyzed about 10 common features 
and discovered about 25 feature interactions. For instance, encryption and auto-responder 
interact as follows. The auto-responder answers emails automatically by quoting the subject 
field of the incoming email. If an encrypted email is decrypted first and then processed by 
the auto-responder, an email with the subject of the email will be returned. This however 
leaks the originally encrypted subject if the outgoing email is sent in plain. Hence for 
combining these seemingly independent features one must consider such special cases. We 
use in the sequel the above email example. The main features (see also [4]) are: 

- Encryption and decryption for encrypted mails. 
- Filtering particular emails, e.g. for virus protection. 
- An auto-reply feature for automatic answers to all incoming emails. 
 

In the following section we present the background on statecharts. Modular construction of 
statecharts modeling the behavior of features, interactions, and their combination is 
discussed in Section 3 through Section 5. 

2 Statechart Diagrams and Semantic Refinement 
Our graphic description method for developing software components is based on UML 
statechart diagrams [10]. When we model a software component with statecharts, we aim at 
specifying the behavior of its functions. We label transitions by the functions which trigger 
these transitions. An external function call triggers a transition labeled with this function 
depending on the current state of the statechart. Note that the finite number of states of a 
statechart usually represents an abstraction of the internal states a component can have. 
 
We use the following UML notation for labeling transitions: 
 

called_function() [condition]  / action 
 
A transition can be initiated by an external event, here called_function(). It may have a 
condition and it may have an action it initiates. This action describes the behavior triggered 
by the function. Note that all three labels may be empty. In case the trigger function is 
omitted, we have an internal transition without an external event, also called spontaneous 
transition. 
 
An example is the statechart in Figure 1 describing the basic functionality of an email 
system in a feature called BasicEmail. We have two states, one called Waiting (for email) 
and the other called Emailarrived. The initial state is Waiting.  
 
The transition labeled incoming() is triggered if an email has arrived and issues the 
operation get() to retrieve the email. The transition labeled deliver is the actual processing 



 

of the new email which triggers the store() function to save the email. This simple model of 
an email system only handles one email at a time. Note that we indicate functions by 
parentheses as in f(), which does not mean that these are parameter-less functions in an 
implementation. Later we will introduce parallel statechart diagrams and hierarchical 
diagrams based on UML notation. 

 
Figure 1: The BasicEmail Feature 

2.1 Semantics  
Our semantic model employs an external black-box view of the component. It is based on 
function calls from the outside which trigger transitions. Only the input and output are 
considered, not the internal states.  A possible run can be specified by a trace of the 
externally called functions and the resulting actions of the statechart. 
 
For instance, consider in this example traces for the statechart in Figure 1 of incoming() and 
deliver() transitions, triggered by external function calls. 
 
Input sequence: 
  incoming(), deliver(), incoming(), deliver(), incoming(), deliver(), 
Ouput sequence: 
  get(), store(),get(), store(), get(), store(), 
 
We adopt the loose, “chaos” semantics [9] where the semantics of a component is given as 
the set of possible traces. The set of traces includes any possible trace by transitions 
specified in the statechart. In addition, any unspecified function call, e.g. a function call for 
which no transition is defined in the current state, leaves the statechart in chaos state and 
any behavior is permitted after that. For instance, the output for the input deliver() in the 
Waiting state is not defined in the statechart and hence anything is permitted after this. Our 
semantic model does not specify what happens in case the deliver() function is called in 
Waiting state. Hence the statechart does not fully specify a single implementation, but 
permits many possible implementations, which fulfill the specified input/output relation. 
More formally, we can describe the semantics as a set of deterministic, monotonic 
functions which are compatible the statechart. Each function represents a possible, 
deterministic implementation. Since many implementations are possible, we use a set of 
functions.  This set of possible implementations can be reduced, which we view as 
refinement. Note that our statechart model permits a non-deterministic choice if several 
transitions are possible in one state, which is just a special case of loose semantics. For a 
more detailed treatment of the semantic background we refer to [1]. 

Email 
arrived   

Waiting   

 

deliver() / store()  

incoming() / get()  



 

2.2 Refinement 
Our notion of semantic refinement of statecharts aims at specifying a component in more 
detail and hence to reduce under-specification. We speak of semantic refinement of a 
statechart to another, if the refined one has fewer possible traces. As the loose semantics of 
a statechart is a set of functions, this can be formally expressed by reducing this set of 
functions. In this way, it is very suitable for abstract specifications and enables step-wise 
refinement by adding more specific behavior. For further details on semantic refinement 
relations for automata models, similar to statecharts, we refer to [9,5,7].  
 
The main benefit of graphic refinement rules is their ease of use. The graphic refinement 
rules are based on syntactic input and output events. In some cases conditions of transitions 
have to be considered. Note that the rules do not cover any properties of possible 
input/output parameter or of internal state variables. To include these, the same semantic 
models can be used in this case [5,7], but deeper reasoning is required.   In practice, this 
often means that the refinement is shallow and just implies compatibility with respect to the 
input and output messages.  
 
The following graphic operations on statecharts are also refinements with respect to our 
semantics.  These elementary statecharts refinement operations are proven to be 
semantically correct [5,7]: 

- Add new behavior which was unspecified before, e.g. add a new state or add a new 
transition to a state, which did not exist at this state. Since this transition was not 
specified before, there is less chaotic behavior and the set of traces is decreased. 

- Eliminate alternative transitions, if alternative transitions exit. This reduces non-
determinism and specifies the behavior more precisely. Note that adding a condition 
to a transition can be handled in the same way, as it removes possible transitions at 
run time.  

- Add internal or compatible behavior, which only adds new or internal behavior and 
does not change the original output. In this case of new behavior, we can abstract 
from the additional behavior and the old behavior remains unchanged. Under this 
abstraction, the original behavior is preserved. 

- Eliminating transitions for exceptional cases. In this case, refinement only holds if 
some exceptional case does not occur. This is also called conditional refinement. 
Note that adding conditions to transitions is viewed as removing transitions. 

 
In the following sections, we use the four refinement rules described above. 

3 Modeling Features and Interactions by Statecharts 
In this section, we describe graphic techniques to model the behavior of features. A feature, 
like a class in object-oriented design, offers an interface with functions and encapsulates 
internal state. We describe both features and interactions by partial statecharts to describe a 
high-level view of their behavior.  
  
The novel point here is that we describe the features and their interactions modularly as 
fragments of statecharts. For a concrete feature combination, we show later how to combine 
these automatically to a statechart with the combined functionality. For the combination, 
we will make extensive use of hierarchical statecharts and parallel composition of 
statecharts.  
 
When modeling features with statecharts, we can distinguish the following three kinds:  

- Base features with a complete statechart, including an initial state and final states.  



 

- Transition-based features which refine a transition locally, but do not add externally 
visible input transitions to a statechart. These features typically represent a service 
or an aspect which can be added to a feature combination with at least one base 
feature.  

- State-extending features which add global states and externally-visible transitions. 
These features extend the states of some other features and also extend the 
externally visible interface. 

 
We consider in the following these classes of features in the above order. 

3.1 Base Features 

Base features are self contained and can be used without any other features. An example of 
the first kind is the statechart in Figure 1 describing the basic functionality of an email 
system in a feature called BasicEmail.  

The base features typically form the basis of a feature implementation. In contrast to others, 
they can also be used independently. For combination of base features, we will use parallel 
statecharts, as shown below.  

3.2 Transition-based Features  
Transition-based features provide services which can be modelled by internal transitions 
without persistent or global state. These features typically model auxiliary services and 
hence do not change the global control flow. They do not add externally visible input 
transitions to a statechart.  The transition-based feature may however produce additional 
output or trigger transitions, e.g. in other, parallel statecharts as shown later. 
 
We present transition-based features in the examples of the Forwarding and Reply features, 
each of which offers one function of the same name. In Figure 2, we show the internal 
states of the forward and reply functions. The feature Forwarding includes also a function 
call do_forward() which is not detailed here. The reply feature is similar. Note that we use 
two small circles to denote the start and end states of the transitions, which are determined 
later when composing features. 

{forward_active} 
   Forward 

/do_forward() 

{forward_inactive} 

{reply_active} 
Reply 

/do_reply() 

{reply_inactive} 

Feature Forwarding: forward() 

Feature Reply: reply() 

 
Figure 2: Internal View of Forwarding and Reply Features  

 



 

Some transition-based features do not have internal states. Examples in the email 
application are the encryption and decryption features, which consist of a single transition 
each (Figure 3). An actual implementation of these features may have persistent state, but 
this is not modeled here. 

encrypt() 

decrypt() 
 

Figure 3: Encryption and Decryption Features 

In general, a transition-based feature is modeled by a number of transition functions which 
we specify without detailing the start and end states. Furthermore, we may use an internal 
statechart to model the internal behavior of this feature. For refinement, we also make the 
assumption that the local statechart only consists of internal or spontaneous transitions. A 
schematic example is shown in Figure 4 below. 

Local 
Automaton 
 
 

Feature TransitionFeature: transition1() 

start state end state 
internal transitions 

State1 

State2 

.... 

.... 

 
 

Figure 4: Partial Statechart for Transition-oriented Features 

3.3 Global State-extending Features  
Another main category of features is that of state-extending features which extend the set of 
states and add global transitions. In this way, they extend the external interface. For 
instance, consider a feature with a new state called MaintenanceMode (Figure 5). This 
partial statechart does not have initial or final states; its states will be reached by transitions 
from the states of other features. This will be specified separately in the feature interactions. 
Note that this statechart extends the external interface by new functions. 
 
 

Mainten
ance 

enterMaintenance() 
doMaintenance() 

leaveMaintenance() 
 

Figure 5: The MaintenanceMode Feature 
 



 

The definition of a partial statecharts is a statechart with two special transitions for entering 
and leaving the statechart. These do not have start or end states, respectively. This indicates 
that the statechart shall not be used in isolation and shall be combined with others. We do 
not introduce named start/end states, since feature combination in this case would require to 
rename states which can cause complications, e.g. if other features or interactions refer to 
this state. 
 
For combination, these start/end transitions will be mapped to specific states. We will also 
permit that the start function may be triggered from several states, unlike the exit function. 
Compared to the above transition-oriented features, the new state Maintenance is global, as 
well as the functions of the transition are visible externally. As we will show in the next 
section, composition of such features consists of two steps. First we merge this partial 
statechart with another statechart. In addition, other adaptations may be needed. 

4 Resolving Feature Interactions 
Interaction handling adapts a feature into the context of another one in order to resolve 
feature interactions. An adaptor A  B defines a refinement of a composed statechart 
which includes feature A (and possibly others) with feature B. With statecharts, we will use 
two techniques to refine a feature A to the context of a new feature B: 

- The transitions of feature A may be refined. We model this by restricting a 
transition or by inserting a local statechart, leading to hierarchical statecharts. We 
will also use this kind of refinement to specify the start or end states of a transition, 
as shown below.  

- New transitions from the states of A to states of B triggered by function calls of B 
can be added if B is state-oriented. We also refer to [5] for this kind of refinement. 

 
The goal here is to denote this refinement just by describing the necessary refinement steps 
in isolation, without the context of other features. In addition, it is important to describe this 
adaptor generically such that it can be used for any combination of features including 
feature A. This is the essential abstraction which permits to compose features in a flexible 
way.  

4.1 Interaction of Transition-oriented Features 
In this section, we describe features which refine transitions by local statecharts.  More 
precisely, this can be seen as an hierarchical statechart. We first focus on adapting base 
features to transition-oriented features.  For instance, Figure 6 shows how the deliver 
function is adapted to the decryption feature. Note that we do not specify the refinement for 
individual transitions but for functions labeling the transitions. Hence two transitions with 
the same label are refined in the same way. 
 
In the example, the function deliver() is expanded by a statechart with two transitions and a 
newly added state, where decrypt() is a function of the added feature. In this way, we refine 
the deliver() function to first execute the decrypt() operation and then the original deliver() 
operation. Note that BasicEmail.deliver() is now a special internal operation which is not 
externally triggered. We denote this by adding the feature name and by italics. It denotes 
the internal operation to be triggered by deliver() and is implicitly triggered. Externally, it is 
viewed as a spontaneous transition. Also it is important for further refinement steps, which 
can refine this transition. This simplifies the technical treatment, because we do not refine 
local statecharts but only transitions.  



 

 
Figure 6: Adapting BasicEmail to Decryption 

In a similar way we can adapt BasicEmail to Forwarding, as shown in Figure 7. In this 
figure, the function forward(), as defined above, is not shown in detail. 
 

 

Figure 7: Adapting BasicEmail to Forwarding 
Next we consider the case of an adaptor between two transition-oriented features. 
Interaction between automatic reply and decryption is a typical special case, which can 
often be modeled by adding or restricting transitions. The interaction here can be handled 
similar to the above and is shown in Figure 8. Furthermore, we restrict both transitions by 
adding conditions. As we will see later, do_reply() will occur as an action of a transition 
which we refine by the statechart in Figure 8. 

{else} do_reply() 

{mail_wasEncrypted()}  /replyCrypto() 

Reply   Decryption: do_reply() 
 

 
Figure 8: Adapting the Method do_reply of the Feature Reply to the Decryption Feature 

In the general case, an adaptor can refine a transition of the adapted feature by extending 
the transition to a local statechart with internal states and transitions. We do not permit 
externally triggered functions in this refinement, since this may affect the external semantic 
behavior. Externally visible transitions in local statecharts would syntactically be possible, 
but this does not follow our notion of semantic refinement. It would require a different or 
more complex notion of refinement. (See also [5,1]  for a detailed treatment of refinement.) 
The function which is refined can however be used in the operation associated with an 
internal transition.  
 
We can express the general case with following schematic adaptor shown in Figure 9. We 
adapt all transitions labeled with the same function in the same way by one adaptor. In case 
two transitions (from different states) are triggered with the same function, these may not 
have different refinements. 
 
The inner “black-box” statechart can use the functions of the feature A, e.g. A.a(), as well 
as the functions of features B and C.  No others are allowed, since the feature adaptors have 

Plain Mail 
/decrypt()   /BasicEmail.

deliver() 

BasicEmail   Decryption: deliver() 

Fwd Mail 
/BasicEmail.  
deliver()  

  
BasicEmail   Forwarding: deliver() 

   /forward()  



 

to be generic to be added to any feature combination which includes the adapted feature. 
Furthermore, only internal or spontaneous transitions are permitted, as the external input 
behavior shall not change. Note that we use the notation F.f () to denote a function f of the 
feature F. 
 

A 

A   B: a() assumes C 
 

{ .. } / B.b() 

{ .. } / C.c() 

{ .. } / A.a() 

 
Figure 9: Schematic adaptor for a transition, triggered by a(), of feature A to B 

4.2 Interaction of State-extending Features 
Interaction in this case defines the merging of two statecharts by adding transitions between 
the states of the features. For this, we need to map the anonymous start/end states of the 
state-oriented feature to states of another feature. Furthermore, transitions may be refined 
by conditions or actions. In the following, we consider the possible interactions based on 
our classification of features. 
 
A typical interaction with a base feature is illustrated by the example in Figure 10 for 
adding the BasicEmail feature to the MaintenanceMode feature. We only show the relevant 
states for both features and indicate the MaintenanceMode feature by the gray area. The 
interaction defines that the latter feature can be reached from the Waiting state of the 
BasicEmail feature.  We view this interaction as a refinement of the MaintenaneMode 
feature, since the transitions of this feature are refined by specific start/end states.  
 

 
 

MaintenanceMode   BasicEmail :  
 
 

Mainten
ance 

enterMaintenance() 

doMaintenance() 

leaveMaintenance() 

Waiting 
 

 
Figure 10: The MaintenanceMode Interaction with BasicEmail Feature 
 
Another example is shown for a feature called ErrorCase with the state EmailError and the 
two functions error() and resume().  



 

 
Figure 11: Interaction of Error and BasicEmail features 
 
In the general case, an adaptation A  B, with one base and one state-extending feature 
means to add new transitions from states of A to states of B, which are labeled by functions 
of A.  For instance, in the above example the other direction for adaptation is also possible. 
In this alternative, adapting BasicEmail to ErrorCase would allow one to add transitions 
labeled with deliver() or incoming() of BasicEmail to the EmailError state. Regarding 
semantic refinement in this variation, we have to make sure that this transition has not been 
defined before. For instance, it would be legal in this variation to add a transition labeled 
deliver() from Waiting to EmailError, since this is not defined yet.  On the other hand, this 
is not possible for the Emailarrived state, since this would overlap with an existing 
transition. Although this might be viewed as a non-deterministic statechart, this leads to 
semantic refinement problems as discussed in [5]. 
 
The case of an adaptation between two state-extending features is similar to the above. The 
difference is that in combination of several features, only one interaction may define the 
exit transition of the new statechart. On the other hand, we show that there can be several 
transitions labeled with the function entering the new feature. An example for this case is 
the adaptation of MaintenanceMode to ErrorCase, as shown in Figure 12. For this, we add a 
new transition labeled enterMaintenace() from the EmailError state. In this way, the 
MaintenanceState is also reachable in an error case, which resolves an important 
interaction. Note that we do not fix a state for the exit transition from Maintenance, since 
we assume that this will be done by the base feature, here the BasicEmail feature. As a 
general rule, only one feature in a combination can define the exit state. In contrast, there 
can be several transitions for entering the Maintenance state. For instance, there can be 
transitions from both the Error and BasicEmail features. 
 
In addition to this mapping, we may have to refine the transitions, as for transition-based 
features. In this example, the transition leaveMaintenance() has been restricted. We refine 
the leaveMaintenance message to leave the Maintenance state only if no errors exist. In 
other words, it is possible to enter maintenance from error state, but then the error must be 
fixed in the maintenance state. 

Email 
arrived   

Waiting 

Email 
Error 
 
 

error()   resume()   
 
 
 

ErrorCase  BasicEmail:  



 

 
Figure 12: The MaintenanceMode Interaction with BasicEmail Feature 
 
The adaptation of a transition-oriented to a state-extending feature is more restricted, since 
we may not add transitions from local to global states. Hence only transition refinement by 
conditions or actions is possible. 
 
We have discussed the combination of state-extending and base features.  The remaining 
case of adaptation of a state-extending to a transition-oriented feature is analogous to the 
case for base features shown above. 

4.3 Interaction of Base Features 
For base features, we distinguish several cases.  The cases where a base feature interacts 
with a transition-based or state-extending feature have already been treated above. In case 
of interactions between two base features, we use parallel statecharts for combination, as 
shown below. Since these statecharts operate separately, we can only restrict the transitions 
of the other base feature, as shown in the examples above. Adding transitions between 
parallel statecharts is not permitted. 

5 Combining Features and Interactions as Refinement 
We show in the following how to combine features and their interaction handlers in an 
automatic way. If no adaptor between two features exists, we assume that the features can 
be combined in any arbitrary order. If feature A must be adapted in the presence of B, A 
must clearly be added before B. In this way, the interaction handling defines the order of 
the feature combination. Given a selection of features, a possible sequence for composition 
can be inferred. Alternatively, a particular order can be given explicitly. Then the statechart 
for a concrete feature combination can be determined, as we show in this section. We use 
several forms of statecharts refinement, including transition refinement and parallel 
statecharts. For a more detailed semantic treatment of refinement we refer to [5,9]. 
 
In order to obtain practical composition schemes, we follow several design principles as 
discussed in [8,6]: 

- We limit our model to feature interactions between two features. As we focus on a 
general purpose software development method, we do not focus on modeling such 
three-way interactions [12]. We refer to [8] for a more detailed discussion. 

- Asymmetric interaction handling: in case of an interaction only one feature is 
adapted.  

- Composition of features in a sequential order is used as it is the simplest and most 
natural composition technique. 

 

 
 

MaintenanceMode  ErrorCase:  
  
  

Mainten
ance 

enterMaintenance() 
doMaintenance()   

{ noErrors}  
   leaveMaintenance()   Email 

Error   
  



 

5.1 Transition Refinement 
We cover in the following the case of adding transition-based features. In this case, the 
combined statechart can be obtained by unfolding the interaction handlers in the statechart 
one after the other. Adding features with global control state is considered in the following 
section.  
 
We consider in the example a typical case with a base feature, which is externally visible, 
and add auxiliary features, which do not change the external interface. We first consider 
adding features to the base feature, and then we look at other kinds of interactions. This 
combination proceeds sequentially and produces a typical pipeline-architecture, where the 
input is passed from one feature to another. For instance, the message is first forwarded, 
and then decrypted, and finally it is delivered to the client. Hence the interaction consists of 
extending the message delivery function of the basic email feature. For the reverse 
direction, not shown here, one has to extend the message incoming function in a similar 
way. 

Email 
arrived 

Waiting 

BasicEmail.deliver() /    store() 

incoming() / get() 

Plain Mail 
 

/decrypt() 
 

Fwd Mail 
 

 
 

 deliver() 
 

{forward_active} 
 
 

   Forward 
 
 

/do_forward() 
 
 

{forward_inactive} 
 
 

 
Figure 13: Combination of Basic Email, Decryption and Forwarding 

 
The hierarchical statechart in Figure 13 shows the combination of three features, extending 
the basic email feature. Note that the delivery() function has been refined twice by two 
feature interactions. As only new behavior is added, refinement by abstraction is easy to 
show. 
 
In similar fashion, we can combine three other features, including the reply and decrypt 
features. We first define the interaction between the Reply and the BasicEmail feature, as 
shown in Figure 14. In this figure, the function forward(), as defined above, is not shown in 
detail. 



 

Fwd Mail 
BasicEmail. 
deliver() 

BasicEmail    Reply: deliver() 

   /do_reply() 
 

 

Figure 14: Adapting BasicEmail to Reply 
The combination of the three features in Figure 15 also illustrates the interaction between 
the reply and decrypt features, which is not shown explicitly. For this interaction, we refine 
the do_reply() function to account for the interaction and use a function replyCrypto() in 
case the email was encrypted. This function has to handle the interaction of leaking the 
previously encrypted header of the email, as detailed above. 

/ if (mailEncrypted) 
  replyCrypto() 
  else do_reply()  

 

Email 
arrived 
 

Waiting 
 

BasicEmail.deliver()    /  store() 
 

incoming() / store() 

Reply Done 
 
 

Reply 
 
 

 deliver() 
 
 {reply_active} 

 
 
 

   Plain Mail 

{reply_inactive} 
 
 
 

/decrypt() 
 

 
Figure 15: Combination of Basic Email, Auto Reply and Decryption 
 
With respect to the original BasicEmail, the refinement relation is clear; all the new output 
operations have to be abstracted. For the refinement from the combination of BasicEmail 
and Auto Reply to this combination of three features, exceptions have to be considered. 
Since the normal do_reply() function is not used in case of encrypted emails, we have to 
consider this as an exception. Unless the exception occurs, the refinement holds with the 
appropriate abstraction of the new output. 

5.2 Combination of Base Features 
So far, we have expanded transitions for combination. For base features this method is 
however insufficient. In the case of two base features, we combine features with individual 
statecharts. We obtain two parallel statecharts with disjoint function labels. This is typically 
needed if features add external methods and may affect the control state. 
 
For instance, consider a generic locking feature, which disables all function calls to an 
object which change the state. In the case of the mailer, this may be used to stop 
receiving/sending, e.g. to configure or inspect the mailer. 
 



 

The lock feature has two externally visible functions, lock and unlock, and two states. It is 
shown in Figure 16. 

locked unlocked 

unlock() 

lock() 
 

Figure 16: The Lock Feature 

When combining the BasicEmail and the lock features, the interaction handling shall block 
transitions if the statechart is locked. We show the combined statechart in Figure 17; it uses 
several interaction adaptors which are not shown separately.  The first interaction is the 
blocking of transitions by adding conditions to the transitions, which is a particular form of 
transition refinement. Adaptors can extend the functions in the parallel statecharts and can 
add function calls to other statecharts. For instance, an adaptor to lock may invoke the 
lock() operation of the Lock feature. For illustrating this, we show here a new function of 
the basic email feature, called reset. When adapting this function to Lock, this transition has 
to unlock the Lock.  
 
When adding another feature we may have to adapt all the previously adapted functions. 
With parallel statecharts, only the transitions of one statechart have to be adapted. 
Furthermore, we need to restrict the transitions of the BasicEmail feature by some 
conditions which check if the statechart is not locked. These conditions are not detailed 
here and are specified in an adaptor similar to the above cases. 
 

Email arrived waiting 

 
{is_unlocked()} deliver()  

{is_unlocked()} 
incoming() 

locked unlocked 

 unlock() 

lock() 

reset() /    
unlock() 
 

 
Figure 17: Parallel Statechart with the adapted BasicEmail and Lock Features 

An interesting case occurs when a state-oriented feature is added to email which interacts 
with lock. In this case, only adaptation of transitions is permitted. It is not permitted that 
interaction handling creates transitions between states of parallel-composed statecharts. 
This would lead to semantic problems as it contradicts the concept of parallel composition. 
Since the new statechart only adds new behavior, refinement is easy to show. 



 

5.3 Features which add Global States  
In the following, we discuss the combination of features which add global states. For this, 
we have two steps: 

- Merge the statecharts of the new feature with an existing statechart with some 
features. 

- Adapt all the previously added features. For this, we add the transitions and 
transition refinements for each adaptor of  all the features added earlier. 

 
For instance, we can combine the Maintenance, Error, and BasicEmail features as shown in 
the Figure 18 below. Note that we first add the Maintenance feature, which is then first 
adapted to the Error feature and then to the BasicEmail feature.  Each of these adaptations 
adds one transitions labeled enterMaintenance(). As these transitions and the states are new, 
it is easy to see that the semantic refinement relation holds. 

   

Email   
arrived   

Waiting 
deliver() / store()

incoming() / get()

Mainten 
ance 

enterMaintenance () 

doMaintenance 
  ()   

{ noErrors }   
leaveMaintenance   ()   

{ noErrors }   
leaveMaintenance   ()   

Email   
Error   

enterMaintenance () 
error  ()  

resume   ()   

 
Figure 18: Combination of Maintenance, Error, and BasicEmail features 

6 Conclusions 
We have presented a set of graphic specification techniques which allow one to structure 
highly entangled software systems. With our graphic design techniques, we have shown 
plug-and-play concepts for the construction of complex statecharts, which describe a 
component with several features. The main contribution is the graphic combination rules of 
features, which are based on semantic refinement. In this way we can select any 
combination from a set of features and the complete statechart can be created automatically. 
As we use each feature only one time and the selected set is ordered implicitly by the 
feature interaction handlers, we have an exponential number of possible feature 
combinations. This is based on a quadratic number of interactions. 
 
There exist several interesting extensions in the area of parallel statecharts for further work. 
For instance, we have focused on sequential composition of statecharts. With parallel 
statecharts, one may specify features which only affect one of the parallel statecharts or 
even add the same feature twice in each of the parallel statecharts. Furthermore, we have 
not considered hiding operations for the external interface. For parallel statecharts, it is 
possible that one of them is controlled by the other and is not externally visible. In this 
case, an extension for syntactical interface hiding may be useful. 
 
Our approach was guided by semantic refinement concepts based on a black box 
component view. We have shown that our combination methods preserve the external 
interface and only reduce the set of possible execution traces. By nature of our approach, 
we have only considered syntactic criteria which are compatible with semantic refinement. 



 

For a deeper semantic analysis of the behavior of components, formal specification 
technologies can be used as e.g. considered in [7,1]. The work in[11] is similar as it aims at 
incremental refinement on different levels of abstraction, but without graphic description. 
 
There is very little work on modularization of statecharts based description. The work in [5] 
covers incremental development of statecharts, but does not consider features as 
independent entities and also does not consider interactions. Most of the work on feature 
interaction aims at detecting interaction, but does not consider systematic development of 
features. There is other work on modeling telecommunication features using statecharts 
[12] which however aims at formal verification using model checking. 
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