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This paper presents a new approach for modular design of highly-entangled software components by statechart 

diagrams. We structure the components into features, which represent reusable, self-contained services. These 

are modeled individually by statechart diagrams. For composition of components from features, we need to 

consider the interactions between the features. These feature interactions, well known in the telecommunications 

area, typically describe special cases or cooperations which only occur when two features are combined. We 

describe these interactions graphically by refinement relations between statecharts. The main novelty is that full 

component descriptions are created in a plug-and-play fashion by combining the statecharts for the required 

features and interactions. Furthermore, we develop different classes of statecharts and show the interactions on a 

case-by-case basis. For composition, we use semantic refinement concepts for statecharts which preserve the 

original behavior. 
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1 Introduction 
When talking about a piece of software, we often speak of a “feature” which this software 

has. For instance, when collecting requirements, features of a software system are common 

terminology. We propose here a graphic description method for feature-centric software 

development which supports composition of components from features in a modular way. The 

abstract behavior of features is modeled by statechart diagrams. However, features are often 

not independent and do interact in many ways. The main contribution of this paper is to 

describe features and interactions graphically and to model their composition by stepwise 

refinement relations between statecharts. 

 

A key problem is that features often have to cooperate or interact in unforeseen ways. In the 

example of an email server, work in [9] has analyzed about 10 common features of an email 

system and discovered about 25 feature interactions. For instance, encryption and auto-

responder interact as follows. The auto-responder answers emails automatically by quoting 

the subject field of the incoming email. If an encrypted email is decrypted first and then 
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processed by the auto-responder, an email with the subject of the email will be returned. This 

however leaks the originally encrypted subject if the outgoing email is sent in plain. Hence 

combining these seemingly independent features is not fully modular, since such special cases 

have to be considered.  

 

In larger systems with many features, these interactions can lead to highly entangled code 

which is difficult to maintain. The problem of feature interactions is well established in the 

telecommunications area [7]. While most of the work in this area focuses on detecting 

interactions, we focus on software design methods which consider interactions. The problem 

is that handling interactions in most cases violates modularity. One often has to fix a special 

case in one feature which only occurs if another particular feature is present. The problem is 

that the code implementing these features becomes overloaded and obscures the core 

functionality of the feature as well as the dependencies.  

 

We present a novel development method for the graphic design of features by statecharts. The 

main idea is that we model features and interactions as partial or incomplete statecharts, 

which can be combined automatically as needed. This approach allows one to cross-cut large 

statechart diagrams into smaller ones, which model features and their interactions. Based on 

semantic refinement concepts for statecharts, we present rules to create component models by 

combining the statecharts of the required features. These graphic refinement rules ensure that 

the original feature behavior is preserved during composition. In summary, our development 

method aims at the following: 

- Features are developed independently, with minimal assumptions about the 

environment (of other features). Hence the implementations are typ ically more 

abstract and reusable. 

- Dependencies between features are explicitly modeled. 

- Automatic construction of customized components, which only includes the needed 

features and interaction handling.  

Our design method offers graphic plug-and-play feature composition in order to avoid 

monolithic software design. This is essential in the following application scenarios: 

- Many different versions of a software component are needed, each having different, 

often alternative features. 

- Applications where monolithic software is unsuitable, since only the features needed 

by a customer are delivered. For instance, when downloading software on a limited 
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mobile device, the download time and storage space on a mobile device should be kept 

minimal. 

- Applications where entangled features are added or updated frequently over the 

lifecycle of a software component. 

 

In the following section we present the general concepts of feature composition. Modular 

construction of statecharts modeling the behavior of features, interactions, and their 

combination is discussed in Section 3 throughout Section 6. 

2 Feature-Oriented Design Principles 
Feature-oriented design aims at the separation of the features and the dependencies between 

them. For this, we first consider the different kinds of interactions. There are the following 

three ways in which features can interact – if they are not fully independent: 

- Two features are simply contradictory or incompatible and cannot be used together.  

An example in the email domain is electronically signing emails to identify the sender 

and another feature, called remailer, which sends emails under an anonymous 

pseudonym. In this case, the joint usage leads to inconsistent behavior for at least one 

feature specification. 

- Features have to be adapted in the presence of others to account for special cases. For 

instance, in the above example with encryption and auto-reply, auto-reply has to be 

different (or again encrypted) for encrypted mails. Such cases with small adaptations 

of a feature occur quite frequently in practice.  

- In many cases features complement each other and additional functionality is required. 

For instance, consider a car with two independent features: central locking (for the 

doors) and an airbag in a car. While both features are well defined independently and 

do not interfere, it is desirable that the crash sensor in the airbag also unlocks the doors 

in an emergency case. This can be seen as the “positive” counterpart of the above, 

“negative” interactions. 

Note that in most of the literature on feature interaction, only unwanted or unexpected 

interactions are considered. Here, we use a wider notion of interaction, as we also model an 

intended cooperation between features as “positive” interactions. 

 

Our approach adopts a clear and simple scheme for modeling interactions. In case two 

features interact, only one feature can be adapted. This covers the majority of all interactions 

and leads to a clearly structured composition architecture. The main goal here is that 
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combination is a clear and natural process; otherwise, the advantage of the modular 

specifications can easily get lost by complicated composition schemes. There exist true multi-

feature interactions [8, 18] which do not occur as pair-wise interactions. In our approach these 

must be reduced to pair-wise interaction handlers. As we focus on a general purpose software 

development method, we do not focus on modeling such three-way interactions directly. We 

refer to [18] for a more detailed discussion.  

 

In summary, the main design principles are as follows. 

- We limit our model to feature interactions between two features. In case that this 

scheme is not sufficient, it may be necessary to split one larger feature into several 

smaller ones. 

- We use asymmetric interaction handling which means that only one feature is adapted 

in case of an interaction. We say feature A is adapted to the context of B.  

- Composition of features in a sequential order is used as it is the simplest and most 

natural composition technique. 

 

For instance, the first principle was used in the case study by [9]. Using ten features, about 

150 pairs of features were examined for their possible interactions. Surprisingly, every sixth 

case showed unexpected behavior. 

 

Regarding the second item, we speak of an adaptor of A to B, which adapts the feature A in 

the presence of feature B. This adaptor is also written as A à B and may adapt methods of 

features A. In [18, 16] these adaptations are examined on the implementation level, similar to 

method overriding in object-oriented languages. 

 

The third item, layered composition, means that features are added in a particular order. 

Figure 1 shows how a feature Fn is added to a combination of the features F1, ..., Fn-1. 

Feature Fn may add new functionality and internal state. Hence the methods of the features in 

the combination have to be adapted by the appropriate adaptors. In the general case, we need 

n-1 adaptors, one for each of the inner features. It is important to note that the methods in the 

inner feature combination may have already been adapted. The composition by layers 

resembles other layered architectures for feature composition [2, 5], which however lack 

explicit support for interactions. 
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Figure 1: Incremental Composition of n Features  
 
In the following sections, we will realize these concepts using statechart diagrams, with the 

focus on refinement relations. 

3 Statechart Diagrams and Semantic Refinement 
Our graphic description method for developing software components is based on UML 

statechart diagrams [22]. When we model a software component with statecharts, we aim to 

specify the behavior of its functions. We label transitions by the functions which trigger these 

transitions. An external function call triggers a transition labeled with this function depending 

on the current state of the statechart. Note that the finite number of states of a statechart 

usually represents an abstraction of the internal states a component can have. 

 

We use the following UML notation for labeling transitions: 

 

 called_function() [condition]  / action 

 

A transition can be initiated by an external event, here called_function(). It may have a 

condition and it may have an action it initiates. This action describes the behavior triggered by 

the function. Note that all three labels may be empty. In case the trigger function is omitted, 

we have an internal transition without an external event, also called spontaneous transition. 

 

In the sequel we explain our concepts by the above email example. In addition to the basic 

email function, the main features (see also [9]) are: 

- Encryption and decryption for encrypted mails. 

Feature Combination   
or Features F 1, ..., F n- 1  

Feature Fn   

F1 à Fn  F2 à Fn  Fn-1à Fn  Adaptor for  features 
F1 ... F n-1 

Feature Fn adds 
methods and state  
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- Filtering particular emails, e.g. for virus protection. 

- An auto-reply feature for automatic answers to all incoming emails. 

 

An example is the statechart in Figure 2 describing the basic functionality of an email system 

in a feature called BasicEmail. We have two states, one waiting for email and the other called 

Email arrived which means that an email has arrived. The initial state is waiting.  

The transition labeled incoming() is triggered if an email has arrived and issues the operation 

get() to retrieve the email. The transition labeled deliver is the actual processing of the new 

email which triggers the store() function to save the email. This simple model of an email 

system only handles one email at a time. Note that we denote functions with parentheses as in 

f(), which does not mean that these are parameter- less functions in a later implementation. 

Later we will introduce parallel statechart diagrams and hierarchical diagrams based on UML 

notation. 

 
Figure 2: The BasicEmail Feature 

3.1 Semantics  
Our semantic model employs an external black-box view of the component. It is based on the 

function calls from the outside which trigger transitions. Only the input and output are 

considered, not the internal states. A possible run can be specified by a trace of the externally 

called functions and the resulting actions of the statechart. 

 

For instance, consider in this example traces for the statechart in Figure 2 of incoming() and 

deliver() transitions, triggered by external function calls. 

Input sequence to statechart in Figure 2: 

  incoming(), deliver(), incoming(), deliver(), incoming(), deliver(), 

Ouput: 

  get(), store(), get(), store(), get(), store(), 

Email 
arrived 

Waiting  

 

deliver() / store()  

incoming() / get()  
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We adopt the loose, “chaos” semantics [19] where the semantics of a component is given as 

the set of possible traces. The set of traces includes any possible trace by transitions specified 

in the statechart. In addition, any unspecified function call, e.g. a function call for which no 

transition is defined in the current state, leaves the statechart in chaos state and any behavior 

is permitted after that. For instance, the output for the input deliver() in the Waiting state is 

not defined in the statechart and hence anything is permitted after this. Our semantic model 

does not specify what happens in case the deliver() function is called in Waiting state. Hence 

the statechart does not specify a single implementation, but permits many possible 

implementations, which fulfill the specified input/output relation. More formally, we can 

describe the semantics as a set of deterministic, monotonic functions which are compatible 

with the statechart. Each function represents a possible, deterministic implementation. Since 

many implementations are possible, we use a set of functions. This set of possible 

implementations can be reduced, which we view as refinement. Note that our statechart model 

permits a non-deterministic choice if several transitions are possible in one state, which is just 

a special case of loose semantics. For a more detailed treatment of the semantic background 

we refer to [4]. 

3.2 Refinement 

Our notion of semantic refinement of statecharts aims to specify a component more concretely 

and to reduce under-specification. We speak of semantic refinement of a statechart to another, 

if the refined one has fewer possible traces and is hence more concrete. As the loose 

semantics of a statechart is a set of functions, this can be formally expressed in our setting by 

reducing this set of functions. Clearly, reducing the set of functions also reduces the possible 

traces. In this way, our semantic model is very suitable for abstract specifications and enables 

step-wise refinement by adding more specific behavior. For further details on semantic 

refinement relations for automata models, similar to statecharts, we refer to [19,14,17].  

 

The main benefit of graphic refinement rules is their ease of use, as no formal reasoning is 

needed. The graphic refinement rules are based on syntactic input and output events. In some 

cases conditions of transitions have to be considered. Note that the rules do not cover any 

properties of possible input/output parameters or of internal state variables. To include these, 

the same semantic models can be used in this case [14,17], but formal reasoning is required.  

In practice, this often means that our graphic refinement implies compatibility with respect to 

the input and output messages, but by construction cannot show deep properties.  
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The following graphic operations on statecharts are also refinements with respect to our 

semantics. These elementary statechart refinement operations are proven to be semantically 

correct [19,14,17]: 

- Add new behavior which was unspecified before, e.g. add a new state or add a new 

transition to a state, which did not exist at this state. Since this transition was not 

specified before, there is less chaotic behavior and the set of traces is decreased. 

- Eliminate alternative transitions, if alternative transitions exit. This reduces non-

determinism and specifies the behavior more precisely. Note that adding a condition to 

a transition can be handled in the same way, as it removes possible transitions at run 

time.  

- Add internal or compatible behavior, which only adds new or internal behavior and 

does not change the original output. In this case of new behavior, we can abstract from 

the additional behavior and the old behavior remains unchanged. Under this 

abstraction, the original behavior is preserved. 

- Eliminating transitions for exceptional cases. In this case, refinement only holds if 

some exceptional case does not occur. This is also called conditional refinement. Note 

that adding conditions to transitions is viewed as removing transitions. 

 

In the following, we explain the above four refinement rules in more detail. The first two 

cases are easy to explain with our semantics, as they directly reduce the number of traces. We 

discuss the last two in more detail in the following. 

 

Adding compatible behavior. We can add behavior by refining a transition by a local 

statechart, which can be seen as a hierarchical statechart. An example is shown in Figure 3. In 

this example, the deliver() transition is replaced by a local statechart, which refines the 

specification of this transition by an additional check. Note that entering the local statechart is 

triggered by the deliver() function (and possible conditions also have to be considered). 

Leaving the local statechart produces the store() function as output, as the original transition 

did before. For refinement, we assume the local statechart does not receive external events. 
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Figure 3: Combination of Basic Email and Forwarding 

 

We view the local statechart as an abstraction of the original one by abstracting from the new 

output. As an example, consider the following input sequence to the statechart in Figure 3: 

 

Input:  incoming(), deliver(), incoming(), deliver(), incoming(), deliver(), 

Ouput:  get(), do_check(), store(), get(), do_check(), store(), get(), do_check(), store(), 

 

In this case, we can view this as a refinement of the above statechart, if we abstract from the 

newly added function call, namely do_check. In this way, refinement can add new details 

(function calls), but otherwise the behaviour does not change. In particular, the input may not 

change, as this would result in incompatibilities. 

 

Eliminating transitions for exceptional cases. A more complicated case is when transitions 

are removed, limited or bypassed. For instance, we consider a virus checker which is run 

before storing an email. Infected emails are considered as an exception and are not stored. We 

can model this by adding a condition to the deliver transition and add an extra transition for 

deliver which does not store the email.  

In this case, we do not have a refinement in the above sense. The above notion only applies 

under the condition that no exception occurs, here infected emails. More formal models of 

this refinement can be found in [17, 18].  

Email 
arrived 

Waiting 

/ store()  

 

incoming() / get()

 

 Checked Mail 

 deliver() 

 
 

/ do_check() 
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4 Modeling Features and Interactions by Statecharts 

In this section, we describe graphic techniques to model the behavior of features. A feature, 

like a class in object-oriented design, offers an interface with functions and encapsulates 

internal state. We describe both features and interactions by partial statecharts which presents 

a high- level view of the ir behavior.  

  

The novel point here is that we describe the features and interactions modularly as fragments 

of statecharts. For a concrete feature combination, we show later how to combine these 

(automatically) to a statechart for the combined functionality. For the combination, we will 

make extensive usage of hierarchical statecharts and parallel composition of statecharts.  

 

When modeling features with statecharts, we can distinguish the following three kinds:  

- Base features with a complete statechart, including an initial state and final states.  

- Transition-based features which represent a service or an aspect which can be added to 

a feature combination with at least one base feature. These features are denoted by 

labeled transitions. Using hierarchical statecharts, these can be detailed by local states 

and internal transitions. They describe the internal behavior of the feature, which is not 

visible externally. 

- State-extending features add global states and externally-visible transitions. These 

features extend the states of some other features and also extend the externally visible 

interface. 

 

We consider in the following these classes of features in the above order. 

4.1 Base Features 

Base features are self contained and can be used without any other features. An example of 

the first kind is the statechart in Figure 2 describing the basic functionality of an email system 

in a feature called BasicEmail.  

The base features typically form the basis of a feature implementation. In contrast to others, 

they can also be used independently. For combination of base features, we will use parallel 

statecharts, as shown below.  
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4.2  Transition-based Features  

Transition-based features provide services which can be modelled by internal transitions 

without persistent or global state. These features typically model auxiliary services and hence 

do not change the global control flow. They do not add externally visible input transitions to a 

statechart. The transition-based feature may however produce additional output or trigger 

transitions, e.g. in other, parallel statecharts as shown later. 

 

We present transition-based features by the examples of the Forwarding and Reply features, 

each of which offers one function of the same name. In Figure 4, we show the internal states 

of the forward and reply functions. The feature Forwarding includes also a function call 

do_forward which is not detailed here. The reply feature is similar. Note that we use two 

small circles to denote the start and end states of this transition, which are determined later 

when composing features. 

 

Figure 4: Internal View of Forwarding and Reply Features  

 

Some transition-based features do not have internal states. Examples in the email example are 

the encryption and decryption features, which consist of a single transition each (Figure 5). 

An actual implementation of these features may have persistent state, but this is not modeled 

here. 

{forward_active}  
   Forward 

/do_forward()  

{forward_inactive}  

{reply_active}  
Reply  

/do_reply() 

{reply_inactive}  

Feature Forward ing: forward()  

Feature Reply: reply()  
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encrypt() 

decrypt() 
 

Figure 5: Encryption and Decryption Features 

In general, a transition-based feature is modeled by a number of transition functions which we 

specify without detailing the start and end states. Furthermore, we may use an internal 

statechart to model the internal behavior of this feature. For refinement, we also make the 

assumption that the local statechart only consists of internal or spontaneous transitions. The 

general case is shown schematically in Figure 6 below. 

Local 
Automaton 
 
 

Feature TransitionFeature: transition1() 

start state end state  
internal transitions  

State1 

State2 

.... 

.... 

 
 

Figure 6: Partial Statechart for Transition-based Features 

4.3 State-extending Features  

Another main category of features are state-extending features which extend the global set of 

states and add global transitions. In this way, they extend the external interface. For instance, 

consider a feature with a new state called MaintenanceMode (see Figure 7). This partial 

statechart does not have initial or final states; its states will be reached by transitions from the 

states of other features. This will be specified separately in the feature interactions. Note that 

this statechart extends the external interface by new functions. 
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Mainten
ance 

enterMaintenance() 

doMaintenance() 

leaveMaintenance() 
 

Figure 7: The MaintenanceMode Feature 

 

The definition of a partial statechart is a statechart with two special transitions for entering 

and leaving the statechart. These do not have named start or end states, respectively. A special 

case is a single transition without named start/end states. This indicates that the statechart 

cannot be used in isolation and shall be combined with others. We do not introduce named 

start/end states, since feature combination in this case would require to rename states which 

can cause complications, e.g. if other features or interactions refer to this state. 

 

For combination, these start/end transitions will be mapped to specific states. We will also 

permit that the start function may be triggered from several states, unlike the exit function. 

Compared to the above transition-oriented features, the new state Maintenance is global, and 

the functions of the transition are visible externally. As we will show in the next section, 

composition of such features consists first of merging this partial statechart with another 

statechart. In addition, other adaptations may be needed. 

5 Feature Interactions 

Interaction handling adapts a feature to the context of another one. An adaptor A à B defines 

a refinement of a composed statechart which includes feature A (and possibly others) with 

feature B. With statecharts, we will use two techniques to refine a feature A to the context of a 

new feature B: 

- The transitions of feature A may be refined. We model this by restricting a transition 

or by inserting a local statechart, leading to hierarchical statecharts. We will also use 

this kind of refinement to specify the start or end states of a transition, as shown 

below.  

- New transitions from the states of A to states of B triggered by function calls of B can 

be added if B is state-oriented. We also refer to [14] for this kind of refinement. 
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The goal here is to denote this refinement just by describing the necessary refinement steps in 

isolation, without the context of other features. In addition, it is important to describe this 

adaptor generically such that it can be used for any combination of features including the 

feature A. This is the essential abstraction which permits one to compose features in a fully 

flexible way.  

5.1 Interaction of Transition-oriented Features 

In this section, we describe the case of features which refine transitions by local statecharts. 

We first focus on adapting base features to transition-oriented features. For instance, Figure 8 

shows how the deliver function is adapted to the Decryption feature. Note that we do not 

specify the refinement for individual transitions but for functions labeling the transitions. 

Hence two transitions with the same label are refined in the same way. 

 

In the example, the function deliver() is expanded by a statechart with two transitions and a 

newly added state, where decrypt() is a function of the added feature. In this way, we refine 

the deliver() function to first execute the decrypt() operation and then the original deliver() 

operation. Note that BasicEmail.deliver() is now a special internal operation which is not 

externally triggered. We denote this by adding the feature name and by italics. It denotes the 

internal operation originally triggered by deliver(). Externally, it is viewed as an internal or 

spontaneous transition. This function call is important for further refinement steps, which can 

refine this transition again. This simplifies the technical treatment, because we do not refine 

local statecharts, but only transitions.  

 

Figure 8: Adapting BasicEmail to Decryption 

In a similar way we can adapt BasicEmail to Forwarding, as shown in Figure 9. In this figure, 

the function forward(), as defined above, is not shown in detail. 

 

Plain Mail   
/decrypt()   /BasicEmail.

deliver()  

BasicEmail  à  Decryption: deliver()   
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Figure 9: Adapting BasicEmail to Forwarding 

Next we consider the case of an adaptor between two transition-oriented features. Interaction 

between automatic reply and decryption is a typical special case, which can often be modeled 

by adding and/or restricting transitions. The interaction can be handled similar to the above 

and is shown in Figure 10. Furthermore, we restrict both transitions by adding conditions, 

where the condition else has the expected meaning.  

 

Figure 10: Adapting the Method do_reply of the Feature Reply to the Decryption Feature 

In the general case, an adaptor can refine a transition of the adapted feature by extending the 

transition to a local statechart with internal states and transitions. We do not permit externally 

triggered functions in this refinement, since this may affect the external semantic behavior. 

Externally visible input transitions in local statecharts would syntactically be possible, but this 

does not follow our notion of semantic refinement.  

 

We can express the general case in the following schematic adaptor shown in Figure 11. We 

lift all transitions labeled with the same function in the same way by one adaptor. In this way, 

we describe refinement of functions. In case two transitions (from different states) are 

triggered with the same function, these may not have different refinements. 

 

The inner “black-box” statechart can use the functions of the feature A, e.g. A.a(), as well as 

the functions of features B and C. No others are allowed, since the feature adaptors have to be 

generic to be added to any feature combination which includes the adapted feature. 

Furthermore, only internal transitions are permitted, as the external input behavior shall not 

change. We use the notation F.f () to denote a function f of the feature F. 

 

Fwd Mail  
/BasicEmail.  
deliver()  

 
BasicEmail  à  Forwarding: deliver() 

   /forward()  

{else} / Decryption.reply() 

{mail_wasEncrypted()}  / replyCrypto()  

Reply à   Decryption: reply()   
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Figure 11: Schematic adaptor for a transition, triggered by a(), of feature A to B 

5.2 Interaction of State-extending Features 

Interaction in this case defines the merging of two statecharts by adding transitions between 

the states of the features. For this, we need to map the anonymous start/end states of the state-

oriented feature to states of another feature. Furthermore, transitions may be refined by 

conditions or actions. We consider in the following the possible interactions based on our 

classification of features. 

 

A typical interaction with a base feature is illustrated by the example in Figure 12 for adding 

the BasicEmail feature to the MaintenanceMode feature. We only show the relevant states for 

both features and indicate the MaintenanceMode feature by the shaded area. The interaction 

defines that the latter feature can be reached from the Waiting state of the BasicEmail feature. 

We view this interaction as a refinement of the MaintenaneMode feature, since the transitions 

of this feature are refined by specific start/end states.  

 

 
Figure 12: The MaintenanceMode Interaction with BasicEmail Feature 

 

Another example is shown in Figure 13 for a feature called ErrorCase with the state 

EmailError and the two functions error() and resume().  

  
  

MaintenanceMode à  BasicEmail:   
  
  

Mainten 
ance   

enterMaintenance()   

doMaintenance()   

leaveMaintenance()   

Waiting   
  

A 

A à  B: a() assumes C 
 

{ .. } / B.b() 

{ .. } / C.c() 

{ .. } / A.a()  
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Figure 13: Interaction of Error and BasicEmail features 

 

In the general case, an adaptation A à B, with one base and one state-extending feature, 

means to add new transitions from states of A to states of B, which are labeled by functions of 

A. For instance, in the above example the other direction for adaptation is also possible. In 

this alternative, adapting BasicEmail to ErrorCase would allow one to add transitions labeled 

with deliver() or incoming() of BasicEmail to the EmailError state. Regarding semantic 

refinement in this variation, we have to make sure that this transition has not been defined 

before. For instance, it would be legal in this variation to add a transition labeled deliver() 

from Waiting to EmailError, since this is not defined yet. On the other hand, this is not 

possible for the EmailArrived state, since this would overlap with an existing transition. 

Although this might be viewed as a non-deterministic statechart, this leads to semantic 

refinement problems as discussed in [14]. 

 

The case of an adaptation between two state-extending features is similar to the above. The 

only difference is that in combination of several features, only one interaction may define the 

exit transition of the new statechart. On the other hand, we show that there can be several 

transitions labeled with the function entering a state of the new feature. An example for this 

case is the adaptation of MaintenanceMode to ErrorCase, as shown in Figure 14. For this, we 

add a new transition labeled with enterMaintenace from the EmailError state. In this way, the 

MaintenanceState is also reachable in an error case, which resolves an important interaction. 

Note that we do not fix a state for the exit transition from Maintenance, since we assume that 

this will be done by the base feature, here the BasicEmail feature. As a general rule, only one 

feature in a combination can define the exit state. In contrast, there can be several transitions 

for entering the Maintenance state, as for instance from states in both the Error and 

BasicEmail features. 

 

Email  
arrived  

Waiting 

Email 
Error 
 
 

error()  resume()  
 
 
 

ErrorCase à  BasicEmail:  
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In addition to this mapping, we may have to refine the transitions, as for transition-based 

features. In this example, the transition leaveMaintenance has been restricted. We refine the 

leaveMaintenance message to leave the Maintenance state only if no error exists. In other 

words, it is possible to enter maintenance from error state, but then the error must be fixed in 

the maintenance state. 

 
Figure 14: The MaintenanceMode Interaction with BasicEmail Feature 

 

The adaptation of a transition-oriented to a state-extending feature is more restricted, since we 

may not add transitions from local to global states. Hence only transition refinement by 

conditions or actions is possible. 

 

We have discussed the combination of state-extending and base features. The remaining case 

of adaptation of a state-extending to a transition-oriented feature is analogous to the case for 

base features shown above. 

5.3 Interaction of Base Features 

For base features, we distinguish several cases. The cases where a base feature interacts with a 

transition-based or state-extending feature have already been treated above. In case of 

interactions between two base features, we use parallel statecharts for combination, as shown 

below. Since these statecharts operate separately, we can only restrict the transitions of the 

other base feature, as shown in the examples above. Adding transitions between parallel 

statecharts is not permitted. 

6 Combining Features and Interactions as Refinement 

We show in the following graphic refinement rules to combine features and their interaction 

handlers. This proceeds in a sequential, ordered way. If feature A must be adapted in the 

presence of B, A must clearly be added before B. If no adaptor between two features exists, 

  
  

MaintenanceMode à  ErrorCase:   
  
  

Mainten 
ance   

enterMaintenance()   

doMaintenance()   

{ noErrors}     
    leaveMaintenance()   Email 

Error   
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we assume that the features can be combined in any arbitrary order. In this way, the 

interaction handling defines the order of the feature combination. Given a selection of 

features, a possible sequence for composition can be inferred. Alternatively, a particular order 

can be given explicitly. Then the statechart for a concrete feature combination can be 

determined, as we show in this section. We use several forms of statecharts refinement, as 

presented in Section 3.2.  

6.1 Transition Refinement 

We cover in the following the case of adding transition-based features. In this case, the 

combined statechart can be obtained by unfolding the interaction handlers in the statechart 

one after the other. Adding features with global control state is considered in the following 

section.  

 
Figure 15: Combination of Basic Email and Forwarding 

 

We consider in the example a typical case with a base feature, which is externally visib le, and 

then add auxiliary features. This combination proceeds sequentially and produces a typical 

pipeline-architecture, where the input is passed from one feature to another. For instance, the 

message is first decrypted, then the signature is verified and then it is delivered to the client. 

Hence the interaction consists of extending the message delivery function of the basic email 

feature. For the reverse direction, not shown here, one has to extend the message incoming 

function in a similar way. 
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BasicEmail.deliver() / 
store()  

incoming() / get()  

Fwd Mail  
 

 
 

 deliver()  
 

{forward_active}  
 
 

   Forward  
 
 

/do_forward()  
 
 

{forward_inactive}  
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Figure 15 shows the combination of two features. In this example, the delivery function has 

been refined to an inner statechart. Note that the transitions in this statechart are internal 

transitions which are not externally triggered. 

Email 
arrived 

Waiting 

BasicEmail.deliver() /    store() 

incoming() / get() 

Plain Mail 
 

/decrypt() 
 

Fwd Mail 
 

 
 

 deliver() 
 

{forward_active} 
 
 

   Forward 
 
 

/do_forward() 
 
 

{forward_inactive} 
 
 

 

Figure 16: Combination of Basic Email, Decryption and Forwarding 

 

The hierarchical statechart in Figure 16 shows the combination of three features, extending 

the basic email feature. Note that the delivery() function has been refined twice by two feature 

interactions. As only new behavior is added, refinement by abstraction is easy to show by 

abstraction from the decrypt and do_forward functions. 

 

In similar fashion, we can combine three other features, including the reply and decrypt 

features. We first define the interaction between the Reply and the BasicEmail feature, as 

shown in Figure 17. In this figure, the function reply(), as defined above, is not shown in 

detail. 

 

Figure 17: Adapting BasicEmail to Reply 

Fwd Mail   
BasicEmail.   
deliver()   

BasicEmail  à  Reply: deliver()   

   / reply()   
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The combination of the three features in Figure 18 also illustrates the interaction between the 

reply and decrypt features, which is not shown explicitly. For this interaction, we refine the 

reply() function to account for the interaction and use a function replyCrypto() in case the 

email was encrypted. This function has to handle the interaction of leaking the previously 

encrypted header of the email, as detailed above. 

 
Figure 18: Combination of Basic Email, Auto Reply and Decryption 

 

With respect to the original BasicEmail, the refinement relation is clear; only the new output 

operations have to be abstracted. For the refinement from the combination of BasicEmail and 

Auto Reply to this combination of three features, exceptions have to be considered. Since the 

normal do_reply() function is not used in case of encrypted emails, we have to consider this as 

an exception. Unless the exception occurs, the refinement holds with the appropriate 

abstraction of the new output. 

6.2 Parallel Composition of Base Features  

So far, we have expanded transitions for combination. For base features this method is 

however insufficient. In the case of two base features, we combine features with individual 

statecharts. We obtain two parallel statecharts with disjoint function labels. This is typically 

needed if features add externally triggered function. 

 

{ mailEncrypted} 
    / replyCrypto() 
{else} do_reply() 

Email 
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BasicEmail.deliver()     /  store()   
 

incoming() / store()   
 

Reply Done   
 
 

Reply  
 
 

 deliver()  
 
 {reply_active}  

 
 
 

   Plain Mail 

{reply_inactive} 
 
 
 

/decrypt()  
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For instance, consider a generic locking feature, which, if locked, disables all function calls to 

an object which change the state. In the case of the mailer, this can be used to stop 

receiving/sending, e.g. to configure or to inspect the mailer. 

 

The lock feature has two externally visible functions, lock and unlock, and two states. It is 

illustrated in Figure 19. 

 

Figure 19: The Lock Feature 

When combining the BasicEmail and the lock features, the interaction handling shall block 

transitions if the statechart is locked. We show the combined statechart in Figure 20; it uses 

several interaction adaptors based on transition refinement which are not shown separately. 

The first interaction is the blocking of transitions by adding conditions to the transitions, 

which is a particular form of transition refinement. Adaptors can extend the functions in the 

parallel statecharts and can add function calls to other statecharts. For instance, an adaptor to 

lock may invoke the lock() operation of the Lock feature. For illustrating this, we show here a 

new function of the basic email feature, called reset(). When adapting this function to Lock, 

this transition has to unlock the Lock. In this example, we use both conditional refinement and 

add new behavior in the form of the lock. 

 

When adding another feature we may have to adapt all the previously adapted functions. With 

parallel statecharts, only the transitions of one statechart have to be adapted. Furthermore, we 

need to restrict the transitions of the BasicEmail feature by some conditions which check if 

the statechart is not locked. These conditions are not detailed here and are specified in an 

adaptor similar to the above cases. 

 

locked unlocked  

unlock()  

lock()  
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Figure 20: Parallel Statechart with the adapted BasicEmail and Lock Features 

An interesting case occurs when a state-oriented feature is added to email which interacts with 

lock. In this case, only adaptation of transitions is permitted. It is not permitted that 

interaction handling creates transitions between states of parallel-composed statecharts. This 

would lead to semantic problems as it contradicts the concept of parallel composition.  

6.3 Features which add Global States  

In the following, we discuss the combination of features which add global states. For this, we 

have two steps: 

- Merge the statecharts of the new feature with an existing statechart with some 

features. 

- Add the transitions and transition refinements of each adaptor of the features 

according to the composition architecture for features. 

For instance, we can combine the Maintenance, Error, and BasicEmail features as shown in 

Figure 21 below. Note that we first add the Maintenance feature, which is first adapted to the 

Error feature and then to the BasicEmail feature. Each of these adaptations adds one transition 

labeled enterMaintenance. As these transitions and the states are new, it is easy to see that the 

semantic refinement relation holds. 

Email arrived waiting  

 
{is_unlocked()} deliver()  

{is_unlocked()} 
incoming()  

locked unlocked  

 unlock()  

lock()  

reset() / 
 unlock() 
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Figure 21: Combination of Maintenance, Error, and BasicEmail features 

7 Conclusions and Related Work 

We have presented a set of graphic specification techniques which allow one to structure 

highly entangled software systems. With our graphic design techniques, we have shown plug-

and-play concepts for the construction of complex statecharts, which describe a component 

with several features. The main contribution is the set of graphic rules for the combination of 

features, which are based on semantic refinement. In general we can select any combination 

from a set of features. As we use each feature only one time and the selected set is ordered 

implicitly by the feature interaction handlers, we have an exponential number of possible 

feature combinations. This is based on a quadratic number of interactions. 

 

With our approach we also address the problem to cross-cut statechart based descriptions. 

While composed statecharts may also become large, we can start with simpler statecharts, 

either by abstracting details (for hierarchical statecharts) or by selecting a smaller feature 

combination.  

  

Another contribution is the classification of statechart models into base, transition-based and 

state-extending ones, which leads to a systematic analysis of typical interaction and 

combination scenarios. We have presented detailed methods to specify the interactions 

between these different kinds of statecharts.  

 

There exist several interesting extensions in the area of parallel statecharts for further work. 

For instance, we have focused on sequential composition of statecharts. With parallel 

statecharts, one may specify features which only affect one of the parallel statecharts or even 

add the same feature twice in each of the parallel statecharts. Furthermore, we have not 
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considered hiding operations for the external interface. For parallel statecharts, it is possible 

that one of them is controlled by the other and is not externally visible. In this case, an 

extension for syntactical interface hiding may be useful. 

 

Our approach was guided by semantic refinement concepts based on a black box component 

view. We have shown that our combination methods preserve the external interface and only 

reduce the set of possible execution traces. By nature of our graphical approach, we have 

considered easy to use, syntactic criteria which are compatible with semantic refinement. For 

a deeper semantic analysis of the behavior of components, formal specification technologies 

can be used as e.g. considered in [17,4].  

 

There are several other approaches to model features and interactions as transition systems.  

For instance, [11] considers features as transition systems and detects interaction by 

overlapping transitions from one state. This is also one of the refinement criteria of our 

approach, but this local detection does not consider the complete external behavior. An 

interesting classification of feature interactions into spurious, conflicting and unspecified 

interactions is presented in [10]. Compared to this, our approach of refinement mostly focuses 

on unspecified interactions, while the handling exceptional cases can be seen as resolving 

conflicting features. Most of the other work in the area of feature interaction aims at detecting 

interaction, but does not consider systematic development of features.  

 

There are several papers which present a formal refinement or verification of statechart, but 

do not offer flexible, graphic feature combination. The work in [12] presents incremental 

refinement for predicate-based specification, but only illustrates the relations between the 

different refinements graphically. The works in [3] and [15] are using statecharts to describe 

telecommunication features and focus on the automatic verification of these models based on 

model checking. A main difference to these is that our graphical feature model is used as a 

graphical specification, while most verification approaches describe an implementation as a 

state transition system and specify the desired properties by separate formulas. 

 

There is very little other work on modularization of statecharts based description. The work in 

[14] covers incremental development of statecharts (called automata there), but does not 

consider features as independent entities and also does not consider interactions separately. 
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Recently, there are first approaches for modularizing UML descriptions [21], which focuses 

however on sequence diagrams and not on statecharts. 

 

There are several extensions of object-oriented programming which address more flexible 

composition concepts on the programming language level. Modeling features and interactions 

as an extension of object-oriented programming is considered in [18]. This forms a natural 

implementation language for the concepts developed here. Other approaches are Mixins [4], 

composition filters [1], aspect-oriented programming [6, 13] and [5]. One of the main 

ingredients for feature-oriented programming, adapting to a context, can also be found in [20]. 

These approaches do however not cover graphic design methods.  
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